Young-Jin Park , François Germain , Jing Liu , Ye Wang , Toshiaki Koike-Akino , Gordon Wichern , Navid Azizan , Christopher Laughman , Ankush Chakrabarty
{"title":"基于时间序列基础模型的建筑能源系统概率预测","authors":"Young-Jin Park , François Germain , Jing Liu , Ye Wang , Toshiaki Koike-Akino , Gordon Wichern , Navid Azizan , Christopher Laughman , Ankush Chakrabarty","doi":"10.1016/j.enbuild.2025.116446","DOIUrl":null,"url":null,"abstract":"<div><div>Decision-making in building energy systems critically depends on the predictive accuracy of relevant time-series models. In scenarios lacking extensive data from a target building, foundation models (FMs) represent a promising technology that can leverage prior knowledge from vast and diverse pre-training datasets to construct accurate probabilistic predictors for use in decision-making tools. This paper investigates the applicability and fine-tuning strategies of time-series foundation models (TSFMs) in building energy forecasting, using <span>Chronos</span> as a case study. We analyze both full fine-tuning and parameter-efficient fine-tuning approaches, particularly low-rank adaptation (LoRA), by using real-world data from a commercial net-zero energy building to capture signals such as room occupancy, carbon emissions, plug loads, and HVAC energy consumption. Our analysis reveals that the zero-shot predictive performance of TSFMs is generally suboptimal. To address this shortcoming, we demonstrate that employing either full fine-tuning or parameter-efficient fine-tuning significantly enhances forecasting accuracy, even with limited historical data. Notably, fine-tuning with low-rank adaptation (LoRA) substantially reduces computational costs without sacrificing accuracy. Furthermore, fine-tuned <span>Chronos</span> TSFMs consistently outperform state-of-the-art deep forecasting models (e.g., temporal fusion transformers) in accuracy, robustness, and generalization across varying building zones and seasonal conditions. These results underline the efficacy of TSFMs for practical, data-constrained building energy management systems, enabling improved decision-making in pursuit of energy efficiency and sustainability.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"348 ","pages":"Article 116446"},"PeriodicalIF":7.1000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic forecasting for building energy systems using time-series foundation models\",\"authors\":\"Young-Jin Park , François Germain , Jing Liu , Ye Wang , Toshiaki Koike-Akino , Gordon Wichern , Navid Azizan , Christopher Laughman , Ankush Chakrabarty\",\"doi\":\"10.1016/j.enbuild.2025.116446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Decision-making in building energy systems critically depends on the predictive accuracy of relevant time-series models. In scenarios lacking extensive data from a target building, foundation models (FMs) represent a promising technology that can leverage prior knowledge from vast and diverse pre-training datasets to construct accurate probabilistic predictors for use in decision-making tools. This paper investigates the applicability and fine-tuning strategies of time-series foundation models (TSFMs) in building energy forecasting, using <span>Chronos</span> as a case study. We analyze both full fine-tuning and parameter-efficient fine-tuning approaches, particularly low-rank adaptation (LoRA), by using real-world data from a commercial net-zero energy building to capture signals such as room occupancy, carbon emissions, plug loads, and HVAC energy consumption. Our analysis reveals that the zero-shot predictive performance of TSFMs is generally suboptimal. To address this shortcoming, we demonstrate that employing either full fine-tuning or parameter-efficient fine-tuning significantly enhances forecasting accuracy, even with limited historical data. Notably, fine-tuning with low-rank adaptation (LoRA) substantially reduces computational costs without sacrificing accuracy. Furthermore, fine-tuned <span>Chronos</span> TSFMs consistently outperform state-of-the-art deep forecasting models (e.g., temporal fusion transformers) in accuracy, robustness, and generalization across varying building zones and seasonal conditions. These results underline the efficacy of TSFMs for practical, data-constrained building energy management systems, enabling improved decision-making in pursuit of energy efficiency and sustainability.</div></div>\",\"PeriodicalId\":11641,\"journal\":{\"name\":\"Energy and Buildings\",\"volume\":\"348 \",\"pages\":\"Article 116446\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378778825011764\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825011764","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Probabilistic forecasting for building energy systems using time-series foundation models
Decision-making in building energy systems critically depends on the predictive accuracy of relevant time-series models. In scenarios lacking extensive data from a target building, foundation models (FMs) represent a promising technology that can leverage prior knowledge from vast and diverse pre-training datasets to construct accurate probabilistic predictors for use in decision-making tools. This paper investigates the applicability and fine-tuning strategies of time-series foundation models (TSFMs) in building energy forecasting, using Chronos as a case study. We analyze both full fine-tuning and parameter-efficient fine-tuning approaches, particularly low-rank adaptation (LoRA), by using real-world data from a commercial net-zero energy building to capture signals such as room occupancy, carbon emissions, plug loads, and HVAC energy consumption. Our analysis reveals that the zero-shot predictive performance of TSFMs is generally suboptimal. To address this shortcoming, we demonstrate that employing either full fine-tuning or parameter-efficient fine-tuning significantly enhances forecasting accuracy, even with limited historical data. Notably, fine-tuning with low-rank adaptation (LoRA) substantially reduces computational costs without sacrificing accuracy. Furthermore, fine-tuned Chronos TSFMs consistently outperform state-of-the-art deep forecasting models (e.g., temporal fusion transformers) in accuracy, robustness, and generalization across varying building zones and seasonal conditions. These results underline the efficacy of TSFMs for practical, data-constrained building energy management systems, enabling improved decision-making in pursuit of energy efficiency and sustainability.
期刊介绍:
An international journal devoted to investigations of energy use and efficiency in buildings
Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.