Xuelan Liu , Peipei Yan , Heng Zhang , Qingtao Gao , Yan Shang , Chunyan Fu
{"title":"10,12-共轭亚油酸通过ERK1/2-AMPK途径减轻原代鸡肝细胞的脂质积累。","authors":"Xuelan Liu , Peipei Yan , Heng Zhang , Qingtao Gao , Yan Shang , Chunyan Fu","doi":"10.1016/j.psj.2025.105904","DOIUrl":null,"url":null,"abstract":"<div><div>Conjugated linoleic acid (CLA) isomers have been reported to reduce body weight and promote glycolipid metabolism in animals. In a preliminary study, we revealed that trans-10, cis-12-CLA (10,12-CLA) plays an important role in modulating lipid metabolism in chickens. However, the underlying mechanism remains unclear. In this study, we constructed an isolated in vitro model with primary chicken hepatocytes to investigate the effect of 10,12-CLA on lipid metabolism. 10,12-CLA inhibited lipid accumulation by decreasing the mRNA expression of sterol regulatory element-binding protein-1c (<em>SREBP-1c</em>), <em>SREBP2</em>, 3‑hydroxy-3-methylglutaryl-CoA reductase (<em>HMGCR</em>), fatty acid synthase (<em>FAS</em>), adipose triacylglyceride lipase (<em>ACC</em>), and lipoprotein lipase (<em>LPL</em>) and increasing the mRNA expression of peroxisome proliferator-activated receptor α (<em>PPARα</em>), carnitine palmitoyltransferase 1 (<em>CPT1</em>) and adipose triacylglyceride lipase (<em>ATGL</em>). Furthermore, 10,12-CLA treatment activated the protein expression of extracellular signal-regulated kinase 1/2 (ERK1/2) and AMP-activated protein kinase (AMPK), whereas treatment with the ERK1/2 inhibitor U0126 reversed the inhibitory effects of 10,12-CLA on lipid accumulation by blocking the ERK1/2-AMPK pathway, leading to increased lipid accumulation and triglyceride content in primary chicken hepatocytes. These findings suggest that in chicken hepatocytes, 10,12-CLA alleviates hepatocyte lipid deposition by activating the ERK1/2-AMPK pathway, promoting fatty acid oxidation and reducing lipid synthesis, revealing the potential mechanism through which 10,12-CLA regulates hepatic lipid metabolism in chickens.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 12","pages":"Article 105904"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"10,12-Conjugated linoleic acid alleviates lipid accumulation in primary chicken hepatocytes via the ERK1/2-AMPK pathway\",\"authors\":\"Xuelan Liu , Peipei Yan , Heng Zhang , Qingtao Gao , Yan Shang , Chunyan Fu\",\"doi\":\"10.1016/j.psj.2025.105904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conjugated linoleic acid (CLA) isomers have been reported to reduce body weight and promote glycolipid metabolism in animals. In a preliminary study, we revealed that trans-10, cis-12-CLA (10,12-CLA) plays an important role in modulating lipid metabolism in chickens. However, the underlying mechanism remains unclear. In this study, we constructed an isolated in vitro model with primary chicken hepatocytes to investigate the effect of 10,12-CLA on lipid metabolism. 10,12-CLA inhibited lipid accumulation by decreasing the mRNA expression of sterol regulatory element-binding protein-1c (<em>SREBP-1c</em>), <em>SREBP2</em>, 3‑hydroxy-3-methylglutaryl-CoA reductase (<em>HMGCR</em>), fatty acid synthase (<em>FAS</em>), adipose triacylglyceride lipase (<em>ACC</em>), and lipoprotein lipase (<em>LPL</em>) and increasing the mRNA expression of peroxisome proliferator-activated receptor α (<em>PPARα</em>), carnitine palmitoyltransferase 1 (<em>CPT1</em>) and adipose triacylglyceride lipase (<em>ATGL</em>). Furthermore, 10,12-CLA treatment activated the protein expression of extracellular signal-regulated kinase 1/2 (ERK1/2) and AMP-activated protein kinase (AMPK), whereas treatment with the ERK1/2 inhibitor U0126 reversed the inhibitory effects of 10,12-CLA on lipid accumulation by blocking the ERK1/2-AMPK pathway, leading to increased lipid accumulation and triglyceride content in primary chicken hepatocytes. These findings suggest that in chicken hepatocytes, 10,12-CLA alleviates hepatocyte lipid deposition by activating the ERK1/2-AMPK pathway, promoting fatty acid oxidation and reducing lipid synthesis, revealing the potential mechanism through which 10,12-CLA regulates hepatic lipid metabolism in chickens.</div></div>\",\"PeriodicalId\":20459,\"journal\":{\"name\":\"Poultry Science\",\"volume\":\"104 12\",\"pages\":\"Article 105904\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Poultry Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032579125011447\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032579125011447","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
10,12-Conjugated linoleic acid alleviates lipid accumulation in primary chicken hepatocytes via the ERK1/2-AMPK pathway
Conjugated linoleic acid (CLA) isomers have been reported to reduce body weight and promote glycolipid metabolism in animals. In a preliminary study, we revealed that trans-10, cis-12-CLA (10,12-CLA) plays an important role in modulating lipid metabolism in chickens. However, the underlying mechanism remains unclear. In this study, we constructed an isolated in vitro model with primary chicken hepatocytes to investigate the effect of 10,12-CLA on lipid metabolism. 10,12-CLA inhibited lipid accumulation by decreasing the mRNA expression of sterol regulatory element-binding protein-1c (SREBP-1c), SREBP2, 3‑hydroxy-3-methylglutaryl-CoA reductase (HMGCR), fatty acid synthase (FAS), adipose triacylglyceride lipase (ACC), and lipoprotein lipase (LPL) and increasing the mRNA expression of peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1 (CPT1) and adipose triacylglyceride lipase (ATGL). Furthermore, 10,12-CLA treatment activated the protein expression of extracellular signal-regulated kinase 1/2 (ERK1/2) and AMP-activated protein kinase (AMPK), whereas treatment with the ERK1/2 inhibitor U0126 reversed the inhibitory effects of 10,12-CLA on lipid accumulation by blocking the ERK1/2-AMPK pathway, leading to increased lipid accumulation and triglyceride content in primary chicken hepatocytes. These findings suggest that in chicken hepatocytes, 10,12-CLA alleviates hepatocyte lipid deposition by activating the ERK1/2-AMPK pathway, promoting fatty acid oxidation and reducing lipid synthesis, revealing the potential mechanism through which 10,12-CLA regulates hepatic lipid metabolism in chickens.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.