0-3纳米粒子- Ba(Ti, MV)O3 (M = Nb, Ta)聚合物介电体的线性、非线性和铁电行为

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Julien Lombardi;Fariha Reza;Nasim Farahmand;Rajinder Deol;Nitika Batra;Jonathan E. Spanier;Christine K. McGinn;Ioannis Kymissis;Stephen O’Brien
{"title":"0-3纳米粒子- Ba(Ti, MV)O3 (M = Nb, Ta)聚合物介电体的线性、非线性和铁电行为","authors":"Julien Lombardi;Fariha Reza;Nasim Farahmand;Rajinder Deol;Nitika Batra;Jonathan E. Spanier;Christine K. McGinn;Ioannis Kymissis;Stephen O’Brien","doi":"10.1109/TNANO.2025.3606832","DOIUrl":null,"url":null,"abstract":"Nanodielectrics based upon nanoscale Ba(Ti, M<sup>V</sup>)O<sub>3</sub>, where M = Nb or Ta, were prepared and electrically characterized for their potential use as a high permittivity dielectric layer. Nanocrystals of Ba(Ti, Nb)O<sub>3</sub> (BTNO) and Ba(Ti, Ta)O<sub>3</sub> (BTTO) of average size 20 nm (range 10–50 nm) with a non-centrosymmetric (polarizable) crystal structure were synthesized, dispersed in alcohol solvents and blended with three polymers of known but differing dielectric and electromechanical behavior: Polyvinylpyrrolidone (PVP), Polyfurfuryl alcohol (PFA) and Polyvinylidene fluoride–trifluoroethylene (PVDF-TrFE). 0–3 nanoparticle-polymer pressed pellets, films and metal-insulator-metal devices were prepared for electrical characterization. Analysis of the Ba(Ti, M<sup>V</sup>)O<sub>3</sub>-PVP and Ba(Ti, M<sup>V</sup>)O<sub>3</sub> -PFA composites showed a high effective permittivity, low loss, low leakage and voltage tolerance, demonstrating the capability for high energy density capacitance. Effective permittivity, of 52 (BTNO-PFA) and 42 (BTTO-PFA) for pellet nanocomposites and 32 (BTNO-PVP) and 20 (BTNO-PVP) film nanocomposites were observed at 1 MHz respectively. Voltage breakdown strengths of 2133 V/mm (BTNO) and 833 V/mm (BTTO) were demonstrated respectively (threshold 0.1 μA). Linear and non-linear dielectric behavior was studied by polarization-electric field (P-E) hysteresis measurements. Nanocomposites of BTNO-PVDF-TrFE were prepared to assess the viability of making ferroelectric nanocomposites over a range of polymer-nanoparticle volume fractions.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"452-461"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear, Non-Linear, and Ferroelectric Behavior in 0–3 Nanoparticle-Polymer Dielectrics of Ba(Ti, MV)O3 (M = Nb, Ta)\",\"authors\":\"Julien Lombardi;Fariha Reza;Nasim Farahmand;Rajinder Deol;Nitika Batra;Jonathan E. Spanier;Christine K. McGinn;Ioannis Kymissis;Stephen O’Brien\",\"doi\":\"10.1109/TNANO.2025.3606832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanodielectrics based upon nanoscale Ba(Ti, M<sup>V</sup>)O<sub>3</sub>, where M = Nb or Ta, were prepared and electrically characterized for their potential use as a high permittivity dielectric layer. Nanocrystals of Ba(Ti, Nb)O<sub>3</sub> (BTNO) and Ba(Ti, Ta)O<sub>3</sub> (BTTO) of average size 20 nm (range 10–50 nm) with a non-centrosymmetric (polarizable) crystal structure were synthesized, dispersed in alcohol solvents and blended with three polymers of known but differing dielectric and electromechanical behavior: Polyvinylpyrrolidone (PVP), Polyfurfuryl alcohol (PFA) and Polyvinylidene fluoride–trifluoroethylene (PVDF-TrFE). 0–3 nanoparticle-polymer pressed pellets, films and metal-insulator-metal devices were prepared for electrical characterization. Analysis of the Ba(Ti, M<sup>V</sup>)O<sub>3</sub>-PVP and Ba(Ti, M<sup>V</sup>)O<sub>3</sub> -PFA composites showed a high effective permittivity, low loss, low leakage and voltage tolerance, demonstrating the capability for high energy density capacitance. Effective permittivity, of 52 (BTNO-PFA) and 42 (BTTO-PFA) for pellet nanocomposites and 32 (BTNO-PVP) and 20 (BTNO-PVP) film nanocomposites were observed at 1 MHz respectively. Voltage breakdown strengths of 2133 V/mm (BTNO) and 833 V/mm (BTTO) were demonstrated respectively (threshold 0.1 μA). Linear and non-linear dielectric behavior was studied by polarization-electric field (P-E) hysteresis measurements. Nanocomposites of BTNO-PVDF-TrFE were prepared to assess the viability of making ferroelectric nanocomposites over a range of polymer-nanoparticle volume fractions.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"24 \",\"pages\":\"452-461\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11152603/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11152603/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

制备了基于纳米级Ba(Ti, MV)O3的纳米介电体,其中M = Nb或Ta,并对其作为高介电常数介电层的潜在用途进行了电学表征。合成了Ba(Ti, Nb)O3 (BTNO)和Ba(Ti, Ta)O3 (BTTO)纳米晶体,平均尺寸为20 nm(范围10-50 nm),具有非中心对称(可极化)的晶体结构,分散在醇类溶剂中,并与三种已知但介电和机电行为不同的聚合物:聚乙烯吡罗烷酮(PVP)、聚呋喃醇(PFA)和聚偏氟乙烯-三氟乙烯(PVDF-TrFE)混合。制备了0-3纳米颗粒-聚合物压粒、薄膜和金属-绝缘体-金属器件进行电学表征。对Ba(Ti, MV)O3- pvp和Ba(Ti, MV)O3 -PFA复合材料的分析表明,复合材料具有较高的有效介电常数、低损耗、低漏损和耐压性能,具有高能量密度电容的性能。在1 MHz下,颗粒纳米复合材料的有效介电常数分别为52 (BTNO-PFA)和42 (BTTO-PFA),薄膜纳米复合材料的有效介电常数分别为32 (BTNO-PVP)和20 (BTNO-PVP)。电压击穿强度分别为2133 V/mm (BTNO)和833 V/mm (BTTO)(阈值0.1 μA)。通过极化电场(P-E)滞回测量研究了线性和非线性介电行为。制备了BTNO-PVDF-TrFE纳米复合材料,以评估在聚合物纳米颗粒体积分数范围内制备铁电纳米复合材料的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear, Non-Linear, and Ferroelectric Behavior in 0–3 Nanoparticle-Polymer Dielectrics of Ba(Ti, MV)O3 (M = Nb, Ta)
Nanodielectrics based upon nanoscale Ba(Ti, MV)O3, where M = Nb or Ta, were prepared and electrically characterized for their potential use as a high permittivity dielectric layer. Nanocrystals of Ba(Ti, Nb)O3 (BTNO) and Ba(Ti, Ta)O3 (BTTO) of average size 20 nm (range 10–50 nm) with a non-centrosymmetric (polarizable) crystal structure were synthesized, dispersed in alcohol solvents and blended with three polymers of known but differing dielectric and electromechanical behavior: Polyvinylpyrrolidone (PVP), Polyfurfuryl alcohol (PFA) and Polyvinylidene fluoride–trifluoroethylene (PVDF-TrFE). 0–3 nanoparticle-polymer pressed pellets, films and metal-insulator-metal devices were prepared for electrical characterization. Analysis of the Ba(Ti, MV)O3-PVP and Ba(Ti, MV)O3 -PFA composites showed a high effective permittivity, low loss, low leakage and voltage tolerance, demonstrating the capability for high energy density capacitance. Effective permittivity, of 52 (BTNO-PFA) and 42 (BTTO-PFA) for pellet nanocomposites and 32 (BTNO-PVP) and 20 (BTNO-PVP) film nanocomposites were observed at 1 MHz respectively. Voltage breakdown strengths of 2133 V/mm (BTNO) and 833 V/mm (BTTO) were demonstrated respectively (threshold 0.1 μA). Linear and non-linear dielectric behavior was studied by polarization-electric field (P-E) hysteresis measurements. Nanocomposites of BTNO-PVDF-TrFE were prepared to assess the viability of making ferroelectric nanocomposites over a range of polymer-nanoparticle volume fractions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信