同时优化活性、热稳定性和特异性的一种新型腈酶的三焦点工作流程。

IF 6.2 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Xiao-Ting Zhou,Ke-Yan Wei,Shan Li,Qi Shen,Ya-Ping Xue,Yu-Guo Zheng
{"title":"同时优化活性、热稳定性和特异性的一种新型腈酶的三焦点工作流程。","authors":"Xiao-Ting Zhou,Ke-Yan Wei,Shan Li,Qi Shen,Ya-Ping Xue,Yu-Guo Zheng","doi":"10.1021/acs.jafc.5c07983","DOIUrl":null,"url":null,"abstract":"Nitrilases provide a sustainable route for directly converting nitriles to carboxylic acids. However, efficient biocatalytic synthesis of the agrochemical intermediate 3,6-dichloropicolinic acid(3,6-DCPA) from 3,6-dichloropicolinonitrile (3,6-DCPN) remains unreported. We identified a novel nitrilase from Rhodococcus pyridinivorans (RpNIT) and developed the integrated Feature Cluster-Multi-Force field-Evolutionary Co-Localization (FMEC) strategy to simultaneously enhance activity, thermostability, and specificity. FMEC employs hierarchical clustering, molecular dynamics simulations, and multiforce field algorithms, identifying 19 candidate residues. Using Parallel Iterative Saturation Mutagenesis, we generated the quintuple mutant M5a-DGPAT. This variant exhibited a 17.2 °C increase in melting temperature and a 3.3 × 104-fold improvement in hydrolytic efficiency (kcat/Km) over wild-type RpNIT, while abolishing hydratase activity. Structural analysis attributed the superior performance to an optimized rigidity-flexibility balance, refined substrate binding pocket geometry, and strengthened interaction networks. M5a-DGPAT achieved complete hydrolysis of 347.9 mM 3,6-DCPN to 3,6-DCPA under mild conditions, demonstrating significant industrial potential. This study establishes a robust computational framework for designing highly active, stable, and specific engineered enzymes.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"29 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Triple-Focus Workflow of a Novel Nitrilase for Simultaneously Optimizing Activity, Thermostability, and Specificity.\",\"authors\":\"Xiao-Ting Zhou,Ke-Yan Wei,Shan Li,Qi Shen,Ya-Ping Xue,Yu-Guo Zheng\",\"doi\":\"10.1021/acs.jafc.5c07983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nitrilases provide a sustainable route for directly converting nitriles to carboxylic acids. However, efficient biocatalytic synthesis of the agrochemical intermediate 3,6-dichloropicolinic acid(3,6-DCPA) from 3,6-dichloropicolinonitrile (3,6-DCPN) remains unreported. We identified a novel nitrilase from Rhodococcus pyridinivorans (RpNIT) and developed the integrated Feature Cluster-Multi-Force field-Evolutionary Co-Localization (FMEC) strategy to simultaneously enhance activity, thermostability, and specificity. FMEC employs hierarchical clustering, molecular dynamics simulations, and multiforce field algorithms, identifying 19 candidate residues. Using Parallel Iterative Saturation Mutagenesis, we generated the quintuple mutant M5a-DGPAT. This variant exhibited a 17.2 °C increase in melting temperature and a 3.3 × 104-fold improvement in hydrolytic efficiency (kcat/Km) over wild-type RpNIT, while abolishing hydratase activity. Structural analysis attributed the superior performance to an optimized rigidity-flexibility balance, refined substrate binding pocket geometry, and strengthened interaction networks. M5a-DGPAT achieved complete hydrolysis of 347.9 mM 3,6-DCPN to 3,6-DCPA under mild conditions, demonstrating significant industrial potential. This study establishes a robust computational framework for designing highly active, stable, and specific engineered enzymes.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.5c07983\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.5c07983","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

腈酶为直接将腈转化为羧酸提供了一条可持续的途径。然而,从3,6-二氯吡啶腈(3,6- dcpn)高效的生物催化合成农化中间体3,6-二氯吡啶酸(3,6- dcpa)的研究尚未见报道。我们从吡啶红球菌(Rhodococcus pyridinivorans, RpNIT)中鉴定出一种新的腈酶,并开发了集成特征簇-多力场-进化共定位(evolutionary Co-Localization, FMEC)策略,以同时提高活性、热稳定性和特异性。FMEC采用分层聚类、分子动力学模拟和多力场算法,确定了19个候选残基。采用平行迭代饱和诱变技术,获得了五重突变体M5a-DGPAT。与野生型RpNIT相比,该变体的熔融温度提高了17.2°C,水解效率(kcat/Km)提高了3.3 × 104倍,同时消除了水合酶活性。结构分析将优越的性能归功于优化的刚性-柔性平衡,改进的基板结合口袋几何形状和加强的相互作用网络。M5a-DGPAT在温和条件下将347.9 mM 3,6- dcpn完全水解为3,6- dcpa,具有显著的工业潜力。本研究为设计高活性、稳定和特异的工程酶建立了一个强大的计算框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Triple-Focus Workflow of a Novel Nitrilase for Simultaneously Optimizing Activity, Thermostability, and Specificity.
Nitrilases provide a sustainable route for directly converting nitriles to carboxylic acids. However, efficient biocatalytic synthesis of the agrochemical intermediate 3,6-dichloropicolinic acid(3,6-DCPA) from 3,6-dichloropicolinonitrile (3,6-DCPN) remains unreported. We identified a novel nitrilase from Rhodococcus pyridinivorans (RpNIT) and developed the integrated Feature Cluster-Multi-Force field-Evolutionary Co-Localization (FMEC) strategy to simultaneously enhance activity, thermostability, and specificity. FMEC employs hierarchical clustering, molecular dynamics simulations, and multiforce field algorithms, identifying 19 candidate residues. Using Parallel Iterative Saturation Mutagenesis, we generated the quintuple mutant M5a-DGPAT. This variant exhibited a 17.2 °C increase in melting temperature and a 3.3 × 104-fold improvement in hydrolytic efficiency (kcat/Km) over wild-type RpNIT, while abolishing hydratase activity. Structural analysis attributed the superior performance to an optimized rigidity-flexibility balance, refined substrate binding pocket geometry, and strengthened interaction networks. M5a-DGPAT achieved complete hydrolysis of 347.9 mM 3,6-DCPN to 3,6-DCPA under mild conditions, demonstrating significant industrial potential. This study establishes a robust computational framework for designing highly active, stable, and specific engineered enzymes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信