针对阿尔茨海默病脑胆固醇转运的机制、介质和药理学方法。

IF 2.8 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Martina Ugolotti, Bianca Papotti, Alessandro Trentini, Gianmarco Mola, Carlo Cervellati, Maria Pia Adorni, Francesca Zimetti
{"title":"针对阿尔茨海默病脑胆固醇转运的机制、介质和药理学方法。","authors":"Martina Ugolotti, Bianca Papotti, Alessandro Trentini, Gianmarco Mola, Carlo Cervellati, Maria Pia Adorni, Francesca Zimetti","doi":"10.2174/0113816128411158250909151734","DOIUrl":null,"url":null,"abstract":"<p><p>Cholesterol transport within the brain represents a highly regulated process essential for maintaining neuronal function and central nervous system (CNS) homeostasis. Unlike peripheral tissues, the brain relies on in situ cholesterol synthesis, primarily by astrocytes and other glial cells, which supply neurons via high-density lipoprotein (HDL)-like particles, identified in the human cerebrospinal fluid (CSF). The major component of HDL-like lipoproteins is the apolipoprotein E (ApoE), whose E4 isoform represents the strongest genetic risk factor for late-onset Alzheimer's disease (AD). Growing evidence suggests that impaired cholesterol transport contributes to the pathogenesis of various neurodegenerative disorders, particularly AD, a major public health concern due to increasing prevalence and the lack of effective treatments. Indeed, the unconvincing outcomes of the amyloid-targeting monoclonal antibodies underscore the urgency of identifying alternative therapeutic strategies. This review provides a comprehensive analysis of cholesterol transport mechanisms within the brain and their dysregulation in AD by examining the astrocyte-to-neuron cholesterol supply pathways, including endogenous biosynthesis, cholesterol efflux from astrocytes, neuronal uptake, and intracellular processing. Key molecular players involved in each step are discussed, focusing on their roles in AD pathophysiology and potential as therapeutic targets. Furthermore, the review critically evaluates recent preclinical studies exploring pharmacological interventions able to modulate cerebral cholesterol homeostasis. These emerging approaches offer promising alternatives to amyloid-based treatments and may open new perspectives for preventing or mitigating neurodegeneration in AD. By providing an integrated overview of cholesterol transport in the brain, this review highlights novel directions for research and drug development targeting CNS cholesterol metabolism.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms, Mediators, and Pharmacological Approaches Targeting Brain Cholesterol Transport in Alzheimer's Disease.\",\"authors\":\"Martina Ugolotti, Bianca Papotti, Alessandro Trentini, Gianmarco Mola, Carlo Cervellati, Maria Pia Adorni, Francesca Zimetti\",\"doi\":\"10.2174/0113816128411158250909151734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cholesterol transport within the brain represents a highly regulated process essential for maintaining neuronal function and central nervous system (CNS) homeostasis. Unlike peripheral tissues, the brain relies on in situ cholesterol synthesis, primarily by astrocytes and other glial cells, which supply neurons via high-density lipoprotein (HDL)-like particles, identified in the human cerebrospinal fluid (CSF). The major component of HDL-like lipoproteins is the apolipoprotein E (ApoE), whose E4 isoform represents the strongest genetic risk factor for late-onset Alzheimer's disease (AD). Growing evidence suggests that impaired cholesterol transport contributes to the pathogenesis of various neurodegenerative disorders, particularly AD, a major public health concern due to increasing prevalence and the lack of effective treatments. Indeed, the unconvincing outcomes of the amyloid-targeting monoclonal antibodies underscore the urgency of identifying alternative therapeutic strategies. This review provides a comprehensive analysis of cholesterol transport mechanisms within the brain and their dysregulation in AD by examining the astrocyte-to-neuron cholesterol supply pathways, including endogenous biosynthesis, cholesterol efflux from astrocytes, neuronal uptake, and intracellular processing. Key molecular players involved in each step are discussed, focusing on their roles in AD pathophysiology and potential as therapeutic targets. Furthermore, the review critically evaluates recent preclinical studies exploring pharmacological interventions able to modulate cerebral cholesterol homeostasis. These emerging approaches offer promising alternatives to amyloid-based treatments and may open new perspectives for preventing or mitigating neurodegeneration in AD. By providing an integrated overview of cholesterol transport in the brain, this review highlights novel directions for research and drug development targeting CNS cholesterol metabolism.</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128411158250909151734\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128411158250909151734","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

胆固醇在脑内的转运是一个高度调控的过程,对维持神经元功能和中枢神经系统(CNS)稳态至关重要。与外周组织不同,大脑依赖于原位胆固醇合成,主要由星形胶质细胞和其他神经胶质细胞合成,这些细胞通过在人脑脊液(CSF)中发现的高密度脂蛋白(HDL)样颗粒供应神经元。高密度脂蛋白样脂蛋白的主要成分是载脂蛋白E (ApoE),其E4亚型是迟发性阿尔茨海默病(AD)最强的遗传危险因素。越来越多的证据表明,胆固醇转运受损有助于各种神经退行性疾病的发病机制,特别是阿尔茨海默病,由于患病率上升和缺乏有效治疗,这是一个主要的公共卫生问题。事实上,淀粉样蛋白靶向单克隆抗体的不令人信服的结果强调了确定替代治疗策略的紧迫性。本文通过考察星形胶质细胞到神经元的胆固醇供应途径,包括内源性生物合成、星形胶质细胞的胆固醇外排、神经元摄取和细胞内加工,全面分析了脑内胆固醇运输机制及其在AD中的失调。讨论了每个步骤中涉及的关键分子,重点讨论了它们在AD病理生理中的作用和作为治疗靶点的潜力。此外,该综述批判性地评估了最近的临床前研究,探索能够调节大脑胆固醇稳态的药物干预。这些新兴的方法为淀粉样蛋白治疗提供了有希望的替代方案,并可能为预防或减轻阿尔茨海默病的神经退行性变开辟新的视角。通过对胆固醇在大脑中的转运进行综合综述,本文强调了针对中枢神经系统胆固醇代谢的研究和药物开发的新方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanisms, Mediators, and Pharmacological Approaches Targeting Brain Cholesterol Transport in Alzheimer's Disease.

Cholesterol transport within the brain represents a highly regulated process essential for maintaining neuronal function and central nervous system (CNS) homeostasis. Unlike peripheral tissues, the brain relies on in situ cholesterol synthesis, primarily by astrocytes and other glial cells, which supply neurons via high-density lipoprotein (HDL)-like particles, identified in the human cerebrospinal fluid (CSF). The major component of HDL-like lipoproteins is the apolipoprotein E (ApoE), whose E4 isoform represents the strongest genetic risk factor for late-onset Alzheimer's disease (AD). Growing evidence suggests that impaired cholesterol transport contributes to the pathogenesis of various neurodegenerative disorders, particularly AD, a major public health concern due to increasing prevalence and the lack of effective treatments. Indeed, the unconvincing outcomes of the amyloid-targeting monoclonal antibodies underscore the urgency of identifying alternative therapeutic strategies. This review provides a comprehensive analysis of cholesterol transport mechanisms within the brain and their dysregulation in AD by examining the astrocyte-to-neuron cholesterol supply pathways, including endogenous biosynthesis, cholesterol efflux from astrocytes, neuronal uptake, and intracellular processing. Key molecular players involved in each step are discussed, focusing on their roles in AD pathophysiology and potential as therapeutic targets. Furthermore, the review critically evaluates recent preclinical studies exploring pharmacological interventions able to modulate cerebral cholesterol homeostasis. These emerging approaches offer promising alternatives to amyloid-based treatments and may open new perspectives for preventing or mitigating neurodegeneration in AD. By providing an integrated overview of cholesterol transport in the brain, this review highlights novel directions for research and drug development targeting CNS cholesterol metabolism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信