没有指定长度路径的图的最大扩展

IF 1.1 3区 数学 Q1 MATHEMATICS
Wenyan Wang, Yi Wang
{"title":"没有指定长度路径的图的最大扩展","authors":"Wenyan Wang,&nbsp;Yi Wang","doi":"10.1016/j.laa.2025.09.019","DOIUrl":null,"url":null,"abstract":"<div><div>The spread of a graph is defined as the difference between the largest and smallest eigenvalues of its adjacency matrix. In this paper, we investigate extremal problems for the spread of graphs that forbid paths of a specified length. For <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> and <em>n</em> sufficiently large, we show that the <em>n</em>-vertex <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span>-free graph achieving maximum spread is the join of a <em>k</em>-vertex clique and an independent set of <span><math><mi>n</mi><mo>−</mo><mi>k</mi></math></span> vertices. We also show that the extremal graph for <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>3</mn></mrow></msub></math></span>-free graphs:<ul><li><span>•</span><span><div>For <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></math></span>, the spread is maximized by the join of a <em>k</em>-vertex clique with the disjoint union of an edge and an independent set of <span><math><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>2</mn></math></span> vertices.</div></span></li><li><span>•</span><span><div>For <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>, the spread is maximized by the join of a <em>k</em>-vertex clique with an independent set with <span><math><mi>n</mi><mo>−</mo><mi>k</mi></math></span> vertices.</div></span></li></ul></div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"729 ","pages":"Pages 24-48"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum spread of graphs without paths of specified length\",\"authors\":\"Wenyan Wang,&nbsp;Yi Wang\",\"doi\":\"10.1016/j.laa.2025.09.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The spread of a graph is defined as the difference between the largest and smallest eigenvalues of its adjacency matrix. In this paper, we investigate extremal problems for the spread of graphs that forbid paths of a specified length. For <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> and <em>n</em> sufficiently large, we show that the <em>n</em>-vertex <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span>-free graph achieving maximum spread is the join of a <em>k</em>-vertex clique and an independent set of <span><math><mi>n</mi><mo>−</mo><mi>k</mi></math></span> vertices. We also show that the extremal graph for <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>3</mn></mrow></msub></math></span>-free graphs:<ul><li><span>•</span><span><div>For <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></math></span>, the spread is maximized by the join of a <em>k</em>-vertex clique with the disjoint union of an edge and an independent set of <span><math><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>2</mn></math></span> vertices.</div></span></li><li><span>•</span><span><div>For <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>, the spread is maximized by the join of a <em>k</em>-vertex clique with an independent set with <span><math><mi>n</mi><mo>−</mo><mi>k</mi></math></span> vertices.</div></span></li></ul></div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"729 \",\"pages\":\"Pages 24-48\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525003921\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003921","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图的扩展被定义为其邻接矩阵的最大和最小特征值之差。在本文中,我们研究了禁止给定长度路径的图的扩展的极值问题。当k≥1且n足够大时,我们证明了实现最大扩展的n顶点P2k+2自由图是k顶点团和n−k顶点的独立集合的连接。我们还证明了P2k+3-free图的极值图:•对于k∈{1,2},扩展是通过k顶点团与n−k−2个顶点的独立集的边的不相交并的连接而最大化的。•对于k≥3,扩展通过k顶点团与n−k顶点的独立集合的连接而最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum spread of graphs without paths of specified length
The spread of a graph is defined as the difference between the largest and smallest eigenvalues of its adjacency matrix. In this paper, we investigate extremal problems for the spread of graphs that forbid paths of a specified length. For k1 and n sufficiently large, we show that the n-vertex P2k+2-free graph achieving maximum spread is the join of a k-vertex clique and an independent set of nk vertices. We also show that the extremal graph for P2k+3-free graphs:
  • For k{1,2}, the spread is maximized by the join of a k-vertex clique with the disjoint union of an edge and an independent set of nk2 vertices.
  • For k3, the spread is maximized by the join of a k-vertex clique with an independent set with nk vertices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信