寡聚化倾向支配自组装形态:来自稳态寡聚体分析的见解

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Xiaoli Wang, , , Ning Wang, , , Peng Zhou, , , Ruochen Guo, , , Na Song, , , Zeyu Zhang, , , Xuehai Yan*, , , Zhilin Yu*, , and , Gongyu Li*, 
{"title":"寡聚化倾向支配自组装形态:来自稳态寡聚体分析的见解","authors":"Xiaoli Wang,&nbsp;, ,&nbsp;Ning Wang,&nbsp;, ,&nbsp;Peng Zhou,&nbsp;, ,&nbsp;Ruochen Guo,&nbsp;, ,&nbsp;Na Song,&nbsp;, ,&nbsp;Zeyu Zhang,&nbsp;, ,&nbsp;Xuehai Yan*,&nbsp;, ,&nbsp;Zhilin Yu*,&nbsp;, and ,&nbsp;Gongyu Li*,&nbsp;","doi":"10.1021/acs.analchem.5c02258","DOIUrl":null,"url":null,"abstract":"<p >Protein and peptide aggregation involves the transition from soluble species to β-sheet-rich aggregates through oligomeric intermediates. While mature aggregates are well-characterized, the mechanism governing the transition from isotropic spherical nuclei to diverse nanostructures remains unclear. Here, we investigate the self-assembly of five amphipathic peptides that form distinct nanostructures. Using oligomer-resolved ion mobility-mass spectrometry and molecular dynamics simulations, we reveal that the oligomerization propensity critically determines the morphological outcomes of peptide assembly. Oligomers formed at lower critical oligomerization concentrations promote nanofiber formation, while those stabilized at higher concentrations lead to nanoribbon assembly. Molecular dynamics simulations confirm that transitional oligomers exhibit minimal solvent-accessible surface areas and maximal hydrogen bonding. These findings establish the oligomerization propensity as a key determinant in directing peptide self-assembly pathways, providing design principles for engineering peptide-based nanostructures with controlled morphologies.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"97 40","pages":"21863–21872"},"PeriodicalIF":6.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oligomerization Propensity Governs Self-Assembly Morphology: Insights from Steady-State Oligomer Analysis\",\"authors\":\"Xiaoli Wang,&nbsp;, ,&nbsp;Ning Wang,&nbsp;, ,&nbsp;Peng Zhou,&nbsp;, ,&nbsp;Ruochen Guo,&nbsp;, ,&nbsp;Na Song,&nbsp;, ,&nbsp;Zeyu Zhang,&nbsp;, ,&nbsp;Xuehai Yan*,&nbsp;, ,&nbsp;Zhilin Yu*,&nbsp;, and ,&nbsp;Gongyu Li*,&nbsp;\",\"doi\":\"10.1021/acs.analchem.5c02258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Protein and peptide aggregation involves the transition from soluble species to β-sheet-rich aggregates through oligomeric intermediates. While mature aggregates are well-characterized, the mechanism governing the transition from isotropic spherical nuclei to diverse nanostructures remains unclear. Here, we investigate the self-assembly of five amphipathic peptides that form distinct nanostructures. Using oligomer-resolved ion mobility-mass spectrometry and molecular dynamics simulations, we reveal that the oligomerization propensity critically determines the morphological outcomes of peptide assembly. Oligomers formed at lower critical oligomerization concentrations promote nanofiber formation, while those stabilized at higher concentrations lead to nanoribbon assembly. Molecular dynamics simulations confirm that transitional oligomers exhibit minimal solvent-accessible surface areas and maximal hydrogen bonding. These findings establish the oligomerization propensity as a key determinant in directing peptide self-assembly pathways, providing design principles for engineering peptide-based nanostructures with controlled morphologies.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"97 40\",\"pages\":\"21863–21872\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.5c02258\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.5c02258","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质和肽的聚集涉及通过低聚中间体从可溶性物质到富含β片的聚集体的转变。虽然成熟聚集体的特征很好,但从各向同性球形核到不同纳米结构的转变机制尚不清楚。在这里,我们研究了五种形成不同纳米结构的两性肽的自组装。利用低聚物分辨离子迁移-质谱法和分子动力学模拟,我们揭示了寡聚倾向对肽组装的形态结果有重要影响。在较低的临界浓度下形成的低聚物促进了纳米纤维的形成,而在较高浓度下稳定的低聚物导致了纳米带的组装。分子动力学模拟证实,过渡低聚物具有最小的溶剂可及表面积和最大的氢键。这些发现确定了寡聚化倾向是指导肽自组装途径的关键决定因素,为具有控制形态的工程肽基纳米结构提供了设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oligomerization Propensity Governs Self-Assembly Morphology: Insights from Steady-State Oligomer Analysis

Oligomerization Propensity Governs Self-Assembly Morphology: Insights from Steady-State Oligomer Analysis

Oligomerization Propensity Governs Self-Assembly Morphology: Insights from Steady-State Oligomer Analysis

Protein and peptide aggregation involves the transition from soluble species to β-sheet-rich aggregates through oligomeric intermediates. While mature aggregates are well-characterized, the mechanism governing the transition from isotropic spherical nuclei to diverse nanostructures remains unclear. Here, we investigate the self-assembly of five amphipathic peptides that form distinct nanostructures. Using oligomer-resolved ion mobility-mass spectrometry and molecular dynamics simulations, we reveal that the oligomerization propensity critically determines the morphological outcomes of peptide assembly. Oligomers formed at lower critical oligomerization concentrations promote nanofiber formation, while those stabilized at higher concentrations lead to nanoribbon assembly. Molecular dynamics simulations confirm that transitional oligomers exhibit minimal solvent-accessible surface areas and maximal hydrogen bonding. These findings establish the oligomerization propensity as a key determinant in directing peptide self-assembly pathways, providing design principles for engineering peptide-based nanostructures with controlled morphologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信