Huei-Hsuan Tsai, Yuanjie Tang, Lingmin Jiang, Xiaoyan Xu, Valérie Dénervaud Tendon, Jia Pang, Yanyan Jia, Kathrin Wippel, Jordan Vacheron, Christoph Keel, Tonni Grube Andersen, Niko Geldner, Feng Zhou
{"title":"局部谷氨酰胺泄漏驱动根系微生物定植的空间结构","authors":"Huei-Hsuan Tsai, Yuanjie Tang, Lingmin Jiang, Xiaoyan Xu, Valérie Dénervaud Tendon, Jia Pang, Yanyan Jia, Kathrin Wippel, Jordan Vacheron, Christoph Keel, Tonni Grube Andersen, Niko Geldner, Feng Zhou","doi":"10.1126/science.adu4235","DOIUrl":null,"url":null,"abstract":"<div >Plant roots release exudates to encourage microbiome assembly, which influences the function and stress resilience of plants. How specific exudates drive spatial colonization patterns remains largely unknown. In this study, we demonstrate that endodermal Casparian strips—forming the root’s extracellular diffusion barrier—restrict nutrient leakage into the rhizosphere, coinciding with and controlling spatial colonization patterns of rhizobacteria. We find that vasculature-derived glutamine leakage is a major bacterial chemoattractant and enhancer of proliferation, defining a previously unknown pathway for root exudate formation. Bacteria defective in amino acid chemoperception display reduced attraction toward leakage sites, and roots with Casparian strip defects display bacterial overproliferation, dependent on bacterial capacity for amino acid metabolization. Associated chronic immune stimulation suggests that endodermal nutrient restriction is crucial for regulating microbial colonization and assembly, limiting excessive proliferation that could compromise plant health.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"390 6768","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localized glutamine leakage drives the spatial structure of root microbial colonization\",\"authors\":\"Huei-Hsuan Tsai, Yuanjie Tang, Lingmin Jiang, Xiaoyan Xu, Valérie Dénervaud Tendon, Jia Pang, Yanyan Jia, Kathrin Wippel, Jordan Vacheron, Christoph Keel, Tonni Grube Andersen, Niko Geldner, Feng Zhou\",\"doi\":\"10.1126/science.adu4235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Plant roots release exudates to encourage microbiome assembly, which influences the function and stress resilience of plants. How specific exudates drive spatial colonization patterns remains largely unknown. In this study, we demonstrate that endodermal Casparian strips—forming the root’s extracellular diffusion barrier—restrict nutrient leakage into the rhizosphere, coinciding with and controlling spatial colonization patterns of rhizobacteria. We find that vasculature-derived glutamine leakage is a major bacterial chemoattractant and enhancer of proliferation, defining a previously unknown pathway for root exudate formation. Bacteria defective in amino acid chemoperception display reduced attraction toward leakage sites, and roots with Casparian strip defects display bacterial overproliferation, dependent on bacterial capacity for amino acid metabolization. Associated chronic immune stimulation suggests that endodermal nutrient restriction is crucial for regulating microbial colonization and assembly, limiting excessive proliferation that could compromise plant health.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"390 6768\",\"pages\":\"\"},\"PeriodicalIF\":45.8000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adu4235\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adu4235","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Localized glutamine leakage drives the spatial structure of root microbial colonization
Plant roots release exudates to encourage microbiome assembly, which influences the function and stress resilience of plants. How specific exudates drive spatial colonization patterns remains largely unknown. In this study, we demonstrate that endodermal Casparian strips—forming the root’s extracellular diffusion barrier—restrict nutrient leakage into the rhizosphere, coinciding with and controlling spatial colonization patterns of rhizobacteria. We find that vasculature-derived glutamine leakage is a major bacterial chemoattractant and enhancer of proliferation, defining a previously unknown pathway for root exudate formation. Bacteria defective in amino acid chemoperception display reduced attraction toward leakage sites, and roots with Casparian strip defects display bacterial overproliferation, dependent on bacterial capacity for amino acid metabolization. Associated chronic immune stimulation suggests that endodermal nutrient restriction is crucial for regulating microbial colonization and assembly, limiting excessive proliferation that could compromise plant health.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.