Camille Moore, Emily Wong, Upneet Kaur, Un Seng Chio, Ziling Zhou, Megan Ostrowski, Ke Wu, Iryna Irkliyenko, Sean Wang, Vijay Ramani, Geeta J. Narlikar
{"title":"染色质凝聚体的atp依赖性重塑揭示了不同的中尺度结果","authors":"Camille Moore, Emily Wong, Upneet Kaur, Un Seng Chio, Ziling Zhou, Megan Ostrowski, Ke Wu, Iryna Irkliyenko, Sean Wang, Vijay Ramani, Geeta J. Narlikar","doi":"10.1126/science.adr0018","DOIUrl":null,"url":null,"abstract":"<div >Adenosine triphosphate (ATP)–dependent chromatin remodeling enzymes mobilize nucleosomes, but how such mobilization affects chromatin condensation is unclear. We investigate effects of two major remodelers, ACF and RSC, using chromatin condensates and single-molecule footprinting. We find that both remodelers inhibit the formation of condensed chromatin. However, the remodelers have distinct effects on preformed chromatin condensates. ACF spaces nucleosomes without decondensing the chromatin, explaining how ACF maintains nucleosome organization in transcriptionally repressed genomic regions. By contrast, RSC catalyzes ATP-dependent decondensation of chromatin. RSC also drives micron-scale movements of entire chromatin condensates. These additional activities of RSC may contribute to its central role in transcription. The biological importance of remodelers may thus reflect both their effects on nucleosome mobilization and the corresponding consequences on chromatin dynamics at the mesoscale.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"390 6768","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ATP-dependent remodeling of chromatin condensates reveals distinct mesoscale outcomes\",\"authors\":\"Camille Moore, Emily Wong, Upneet Kaur, Un Seng Chio, Ziling Zhou, Megan Ostrowski, Ke Wu, Iryna Irkliyenko, Sean Wang, Vijay Ramani, Geeta J. Narlikar\",\"doi\":\"10.1126/science.adr0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Adenosine triphosphate (ATP)–dependent chromatin remodeling enzymes mobilize nucleosomes, but how such mobilization affects chromatin condensation is unclear. We investigate effects of two major remodelers, ACF and RSC, using chromatin condensates and single-molecule footprinting. We find that both remodelers inhibit the formation of condensed chromatin. However, the remodelers have distinct effects on preformed chromatin condensates. ACF spaces nucleosomes without decondensing the chromatin, explaining how ACF maintains nucleosome organization in transcriptionally repressed genomic regions. By contrast, RSC catalyzes ATP-dependent decondensation of chromatin. RSC also drives micron-scale movements of entire chromatin condensates. These additional activities of RSC may contribute to its central role in transcription. The biological importance of remodelers may thus reflect both their effects on nucleosome mobilization and the corresponding consequences on chromatin dynamics at the mesoscale.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"390 6768\",\"pages\":\"\"},\"PeriodicalIF\":45.8000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adr0018\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adr0018","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
ATP-dependent remodeling of chromatin condensates reveals distinct mesoscale outcomes
Adenosine triphosphate (ATP)–dependent chromatin remodeling enzymes mobilize nucleosomes, but how such mobilization affects chromatin condensation is unclear. We investigate effects of two major remodelers, ACF and RSC, using chromatin condensates and single-molecule footprinting. We find that both remodelers inhibit the formation of condensed chromatin. However, the remodelers have distinct effects on preformed chromatin condensates. ACF spaces nucleosomes without decondensing the chromatin, explaining how ACF maintains nucleosome organization in transcriptionally repressed genomic regions. By contrast, RSC catalyzes ATP-dependent decondensation of chromatin. RSC also drives micron-scale movements of entire chromatin condensates. These additional activities of RSC may contribute to its central role in transcription. The biological importance of remodelers may thus reflect both their effects on nucleosome mobilization and the corresponding consequences on chromatin dynamics at the mesoscale.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.