基于脑电图的上肢和下肢运动执行分类的机器学习。

IF 1.6 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ismail Korkmaz, Cengiz Tepe
{"title":"基于脑电图的上肢和下肢运动执行分类的机器学习。","authors":"Ismail Korkmaz, Cengiz Tepe","doi":"10.1080/10255842.2025.2566260","DOIUrl":null,"url":null,"abstract":"<p><p>This study classifies upper- and lower-extremity motor execution from electroencephalography (EEG). We compared two feature extractors, statistical features and Common Spatial Patterns (CSP), and four classifiers: K-Nearest Neighbors, Linear Discriminant Analysis (LDA), Multilayer Perceptron, and Support Vector Machine. Metrics were accuracy, F1, precision, and recall. CSP with LDA achieved the best, most consistent performance (72.5% accuracy); statistical features underperformed. We report real-time feasibility benchmarks, post-cue time-window analysis, and significance tests for classifiers. Findings support BCI and neuroprosthesis development, while noting subject variability and dataset specificity. Future work is real-time use, cross-dataset generalization, and hybrid deep learning.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-17"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EEG-based motor execution classification of upper and lower extremities using machine learning.\",\"authors\":\"Ismail Korkmaz, Cengiz Tepe\",\"doi\":\"10.1080/10255842.2025.2566260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study classifies upper- and lower-extremity motor execution from electroencephalography (EEG). We compared two feature extractors, statistical features and Common Spatial Patterns (CSP), and four classifiers: K-Nearest Neighbors, Linear Discriminant Analysis (LDA), Multilayer Perceptron, and Support Vector Machine. Metrics were accuracy, F1, precision, and recall. CSP with LDA achieved the best, most consistent performance (72.5% accuracy); statistical features underperformed. We report real-time feasibility benchmarks, post-cue time-window analysis, and significance tests for classifiers. Findings support BCI and neuroprosthesis development, while noting subject variability and dataset specificity. Future work is real-time use, cross-dataset generalization, and hybrid deep learning.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2566260\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2566260","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究从脑电图(EEG)对上肢和下肢运动执行进行分类。我们比较了两种特征提取器,统计特征和共同空间模式(CSP),以及四种分类器:k近邻、线性判别分析(LDA)、多层感知器和支持向量机。指标是准确性、F1、精密度和召回率。CSP与LDA的准确率最高,达到72.5%;统计特征表现不佳。我们报告了实时可行性基准,提示后时间窗口分析和分类器的显著性检验。研究结果支持脑机接口和神经假体的发展,同时注意到受试者的可变性和数据集的特异性。未来的工作是实时使用、跨数据集泛化和混合深度学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EEG-based motor execution classification of upper and lower extremities using machine learning.

This study classifies upper- and lower-extremity motor execution from electroencephalography (EEG). We compared two feature extractors, statistical features and Common Spatial Patterns (CSP), and four classifiers: K-Nearest Neighbors, Linear Discriminant Analysis (LDA), Multilayer Perceptron, and Support Vector Machine. Metrics were accuracy, F1, precision, and recall. CSP with LDA achieved the best, most consistent performance (72.5% accuracy); statistical features underperformed. We report real-time feasibility benchmarks, post-cue time-window analysis, and significance tests for classifiers. Findings support BCI and neuroprosthesis development, while noting subject variability and dataset specificity. Future work is real-time use, cross-dataset generalization, and hybrid deep learning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信