{"title":"生物炭负载的零价铁在厌氧发酵中促进短链脂肪酸的生产:关注代谢反应和电子传递。","authors":"Zhifang Ning, Jiale Liu, Jiaxing Zhang, Weizhang Zhong, Tianqi Yang, Yali Huang, Xue Qin, Xiaoxu Zhang, Xingdan Xu","doi":"10.1007/s00449-025-03236-z","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon-based and iron-based materials have been widely reported as effective promoters in biogas fermentation due to the promotion of electron transport. However, the effect of these materials, especially in combination, on short-chain fatty acids (SCFAs) production has been scarcely reported. In this study, the production of short-chain fatty acids (SCFAs) from green cabbage waste was promoted by adding biochar (BC) and biochar-supported zero-valent iron (BC@ZVI). The underlying mechanisms, focusing on metabolic pathways and electron transport, were subsequently investigated through metagenomic analysis. The optimal SCFAs yields were achieved with BC (5 g·L⁻1) and BC@ZVI (15 g·L⁻1). While BC notably enhanced n-butyrate production (89.4-fold), BC@ZVI balancedly promoted acetate and n-butyrate. Metagenomics revealed that BC@ZVI's superiority stemmed from its enhanced ability to enrich functional microbes and facilitate electron transfer. Metagenomic analysis revealed that BC@ZVI enriched Sphaerochaeta and Herbinix, which could participate in the direct interspecies electron transfer process. The abundance of almost all functional enzymes involved in carbohydrate hydrolysis and the synthesis of acetate and n-butyrate were remarkably increased by BC@ZVI. BC and BC@ZVI lead to a notable enrichment of conductive pili genes, including pilB, pilC, and pilM. BC@ZVI enriched both conductive pili and c-type cytochromes, which could be considered a more effective selection than BC. Notably, BC@ZVI was more effective than BC in stimulating n-butyrate-type fermentation, significantly shortening the lag phase and the overall fermentation cycle, thereby exhibiting better comprehensive performance, enhancing pH buffering capacity, and strengthening electron transfer and substrate hydrolysis. The results proved the potential of BC@ZVI in SCFAs fermentation and deciphered the underlying mechanisms, which provided a new perspective to promote resource recovery of organic waste by anaerobic system.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of short-chain fatty acids production by biochar-supported zero-valent iron in anaerobic fermentation: focusing on metabolic reactions and electron transport.\",\"authors\":\"Zhifang Ning, Jiale Liu, Jiaxing Zhang, Weizhang Zhong, Tianqi Yang, Yali Huang, Xue Qin, Xiaoxu Zhang, Xingdan Xu\",\"doi\":\"10.1007/s00449-025-03236-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon-based and iron-based materials have been widely reported as effective promoters in biogas fermentation due to the promotion of electron transport. However, the effect of these materials, especially in combination, on short-chain fatty acids (SCFAs) production has been scarcely reported. In this study, the production of short-chain fatty acids (SCFAs) from green cabbage waste was promoted by adding biochar (BC) and biochar-supported zero-valent iron (BC@ZVI). The underlying mechanisms, focusing on metabolic pathways and electron transport, were subsequently investigated through metagenomic analysis. The optimal SCFAs yields were achieved with BC (5 g·L⁻1) and BC@ZVI (15 g·L⁻1). While BC notably enhanced n-butyrate production (89.4-fold), BC@ZVI balancedly promoted acetate and n-butyrate. Metagenomics revealed that BC@ZVI's superiority stemmed from its enhanced ability to enrich functional microbes and facilitate electron transfer. Metagenomic analysis revealed that BC@ZVI enriched Sphaerochaeta and Herbinix, which could participate in the direct interspecies electron transfer process. The abundance of almost all functional enzymes involved in carbohydrate hydrolysis and the synthesis of acetate and n-butyrate were remarkably increased by BC@ZVI. BC and BC@ZVI lead to a notable enrichment of conductive pili genes, including pilB, pilC, and pilM. BC@ZVI enriched both conductive pili and c-type cytochromes, which could be considered a more effective selection than BC. Notably, BC@ZVI was more effective than BC in stimulating n-butyrate-type fermentation, significantly shortening the lag phase and the overall fermentation cycle, thereby exhibiting better comprehensive performance, enhancing pH buffering capacity, and strengthening electron transfer and substrate hydrolysis. The results proved the potential of BC@ZVI in SCFAs fermentation and deciphered the underlying mechanisms, which provided a new perspective to promote resource recovery of organic waste by anaerobic system.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-025-03236-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03236-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Enhancement of short-chain fatty acids production by biochar-supported zero-valent iron in anaerobic fermentation: focusing on metabolic reactions and electron transport.
Carbon-based and iron-based materials have been widely reported as effective promoters in biogas fermentation due to the promotion of electron transport. However, the effect of these materials, especially in combination, on short-chain fatty acids (SCFAs) production has been scarcely reported. In this study, the production of short-chain fatty acids (SCFAs) from green cabbage waste was promoted by adding biochar (BC) and biochar-supported zero-valent iron (BC@ZVI). The underlying mechanisms, focusing on metabolic pathways and electron transport, were subsequently investigated through metagenomic analysis. The optimal SCFAs yields were achieved with BC (5 g·L⁻1) and BC@ZVI (15 g·L⁻1). While BC notably enhanced n-butyrate production (89.4-fold), BC@ZVI balancedly promoted acetate and n-butyrate. Metagenomics revealed that BC@ZVI's superiority stemmed from its enhanced ability to enrich functional microbes and facilitate electron transfer. Metagenomic analysis revealed that BC@ZVI enriched Sphaerochaeta and Herbinix, which could participate in the direct interspecies electron transfer process. The abundance of almost all functional enzymes involved in carbohydrate hydrolysis and the synthesis of acetate and n-butyrate were remarkably increased by BC@ZVI. BC and BC@ZVI lead to a notable enrichment of conductive pili genes, including pilB, pilC, and pilM. BC@ZVI enriched both conductive pili and c-type cytochromes, which could be considered a more effective selection than BC. Notably, BC@ZVI was more effective than BC in stimulating n-butyrate-type fermentation, significantly shortening the lag phase and the overall fermentation cycle, thereby exhibiting better comprehensive performance, enhancing pH buffering capacity, and strengthening electron transfer and substrate hydrolysis. The results proved the potential of BC@ZVI in SCFAs fermentation and deciphered the underlying mechanisms, which provided a new perspective to promote resource recovery of organic waste by anaerobic system.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.