用SnO2-PACl复合电子传输层原位钝化钙钛矿太阳能电池中埋藏界面

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yingchen Li, Yinbin Zhu, Hongkun Cai, Xiaoguang Luo, Qinwen Guo, Jian Su, Tao Hu, Xianwei Zhang, Miao Yan, Juan Li, Jian Ni and Jianjun Zhang
{"title":"用SnO2-PACl复合电子传输层原位钝化钙钛矿太阳能电池中埋藏界面","authors":"Yingchen Li, Yinbin Zhu, Hongkun Cai, Xiaoguang Luo, Qinwen Guo, Jian Su, Tao Hu, Xianwei Zhang, Miao Yan, Juan Li, Jian Ni and Jianjun Zhang","doi":"10.1039/D5TC02837J","DOIUrl":null,"url":null,"abstract":"<p >Electron extraction and transport represent the fundamental functions of the electron transport layer (ETL) in perovskite solar cells (PSCs). In this work, a novel ETL precursor integrates <em>n</em>-propylamine hydrochloride (PACl) with tin oxide (SnO<small><sub>2</sub></small>), which significantly enhances the electron extraction efficiency and provides <em>in situ</em> passivation for both SnO<small><sub>2</sub></small> and perovskite materials. The interaction between deprotonated PA<small><sup>0</sup></small> and surface hydroxyl (–OH) groups on SnO<small><sub>2</sub></small> nanoparticles reduces the density of dangling bonds, thereby decreasing non-radiative recombination losses and improving the electron extraction efficiency of the ETL. Moreover, during the annealing process, the PACl additive partially penetrates the perovskite layer, effectively slowing the crystallization rate, promoting grain growth, and improving the overall quality of the perovskite films. As a result, the power conversion efficiency (PCE) of the modified device increases to 24.39%, compared to 23.55% for the unmodified device. This improvement is primarily attributed to an enhancement in the device's fill factor, with the champion device achieving a fill factor of up to 83.44%. In comparison with conventional interface modification techniques, the composite ETL strategy proposed in this study provides a promising pathway for defect passivation, thereby enabling further efficiency improvements in PSCs.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 38","pages":" 19867-19874"},"PeriodicalIF":5.1000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ passivation of the buried interface in perovskite solar cells using a SnO2–PACl composite electron transport layer\",\"authors\":\"Yingchen Li, Yinbin Zhu, Hongkun Cai, Xiaoguang Luo, Qinwen Guo, Jian Su, Tao Hu, Xianwei Zhang, Miao Yan, Juan Li, Jian Ni and Jianjun Zhang\",\"doi\":\"10.1039/D5TC02837J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electron extraction and transport represent the fundamental functions of the electron transport layer (ETL) in perovskite solar cells (PSCs). In this work, a novel ETL precursor integrates <em>n</em>-propylamine hydrochloride (PACl) with tin oxide (SnO<small><sub>2</sub></small>), which significantly enhances the electron extraction efficiency and provides <em>in situ</em> passivation for both SnO<small><sub>2</sub></small> and perovskite materials. The interaction between deprotonated PA<small><sup>0</sup></small> and surface hydroxyl (–OH) groups on SnO<small><sub>2</sub></small> nanoparticles reduces the density of dangling bonds, thereby decreasing non-radiative recombination losses and improving the electron extraction efficiency of the ETL. Moreover, during the annealing process, the PACl additive partially penetrates the perovskite layer, effectively slowing the crystallization rate, promoting grain growth, and improving the overall quality of the perovskite films. As a result, the power conversion efficiency (PCE) of the modified device increases to 24.39%, compared to 23.55% for the unmodified device. This improvement is primarily attributed to an enhancement in the device's fill factor, with the champion device achieving a fill factor of up to 83.44%. In comparison with conventional interface modification techniques, the composite ETL strategy proposed in this study provides a promising pathway for defect passivation, thereby enabling further efficiency improvements in PSCs.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 38\",\"pages\":\" 19867-19874\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02837j\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02837j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电子萃取和传递是钙钛矿太阳能电池(PSCs)中电子传递层(ETL)的基本功能。在这项工作中,一种新的ETL前驱体将盐酸正丙胺(PACl)与氧化锡(SnO2)集成在一起,显著提高了电子萃取效率,并为SnO2和钙钛矿材料提供了原位钝化。去质子化的PA0与SnO2纳米粒子表面羟基(-OH)基团之间的相互作用降低了悬空键的密度,从而降低了非辐射复合损失,提高了ETL的电子提取效率。此外,在退火过程中,PACl添加剂部分渗透到钙钛矿层中,有效减缓了钙钛矿的结晶速度,促进了晶粒的生长,提高了钙钛矿薄膜的整体质量。改进后器件的功率转换效率(PCE)提高到24.39%,而未改进器件的功率转换效率为23.55%。这一改进主要归功于设备填充系数的增强,冠军设备的填充系数高达83.44%。与传统的界面修饰技术相比,本研究提出的复合ETL策略为缺陷钝化提供了一条有希望的途径,从而进一步提高了psc的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In situ passivation of the buried interface in perovskite solar cells using a SnO2–PACl composite electron transport layer

In situ passivation of the buried interface in perovskite solar cells using a SnO2–PACl composite electron transport layer

Electron extraction and transport represent the fundamental functions of the electron transport layer (ETL) in perovskite solar cells (PSCs). In this work, a novel ETL precursor integrates n-propylamine hydrochloride (PACl) with tin oxide (SnO2), which significantly enhances the electron extraction efficiency and provides in situ passivation for both SnO2 and perovskite materials. The interaction between deprotonated PA0 and surface hydroxyl (–OH) groups on SnO2 nanoparticles reduces the density of dangling bonds, thereby decreasing non-radiative recombination losses and improving the electron extraction efficiency of the ETL. Moreover, during the annealing process, the PACl additive partially penetrates the perovskite layer, effectively slowing the crystallization rate, promoting grain growth, and improving the overall quality of the perovskite films. As a result, the power conversion efficiency (PCE) of the modified device increases to 24.39%, compared to 23.55% for the unmodified device. This improvement is primarily attributed to an enhancement in the device's fill factor, with the champion device achieving a fill factor of up to 83.44%. In comparison with conventional interface modification techniques, the composite ETL strategy proposed in this study provides a promising pathway for defect passivation, thereby enabling further efficiency improvements in PSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信