CsPbI3钙钛矿薄膜的多晶相变映射

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rudolph Holley III, Quinn C. Burlingame and Yueh-Lin Loo
{"title":"CsPbI3钙钛矿薄膜的多晶相变映射","authors":"Rudolph Holley III, Quinn C. Burlingame and Yueh-Lin Loo","doi":"10.1039/D5TC01126D","DOIUrl":null,"url":null,"abstract":"<p >Inorganic perovskite CsPbI<small><sub>3</sub></small> has a bandgap of 1.7 eV, making it an ideal complementary absorber to Si for integration into tandem solar cells. However, the black, photoactive CsPbI<small><sub>3</sub></small> phases are metastable and readily transform into a yellow non-perovskite δ-CsPbI<small><sub>3</sub></small> phase at room temperature, posing a significant challenge to long-term device stability. In this study, we investigate the temperature-dependent dynamics of these phase transitions in CsPbI<small><sub>3</sub></small> thin films using a combination of <em>in situ</em> X-ray diffraction and time-resolved optical microscopy. We find the transformation rate to be highly temperature-dependent, with the fastest conversion occurring at 225 °C, where 50% of the film transformed to δ-CsPbI<small><sub>3</sub></small> within 17 minutes. To identify processing temperatures with longer phase-stability windows, we used the time- and temperature-dependent phase dynamics data to generate a time-temperature-transformation diagram for thin film CsPbI<small><sub>3</sub></small>. Processing near the peak conversion temperature must be completed within two minutes to retain black-phase purity, while processing above 280 °C or below 150 °C provides a much wider processing window with &lt;1% conversion to δ-CsPbI<small><sub>3</sub></small> occurring after 10 minutes. Conversely, it may be useful to hold CsPbI<small><sub>3</sub></small> solar cells or thin films with phase-stabilizing modifications near 225 °C to accelerate potential phase transitions and maximally stress their stability.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 38","pages":" 19654-19659"},"PeriodicalIF":5.1000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d5tc01126d?page=search","citationCount":"0","resultStr":"{\"title\":\"Mapping the polymorphic phase transformations of CsPbI3 perovskite thin films\",\"authors\":\"Rudolph Holley III, Quinn C. Burlingame and Yueh-Lin Loo\",\"doi\":\"10.1039/D5TC01126D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Inorganic perovskite CsPbI<small><sub>3</sub></small> has a bandgap of 1.7 eV, making it an ideal complementary absorber to Si for integration into tandem solar cells. However, the black, photoactive CsPbI<small><sub>3</sub></small> phases are metastable and readily transform into a yellow non-perovskite δ-CsPbI<small><sub>3</sub></small> phase at room temperature, posing a significant challenge to long-term device stability. In this study, we investigate the temperature-dependent dynamics of these phase transitions in CsPbI<small><sub>3</sub></small> thin films using a combination of <em>in situ</em> X-ray diffraction and time-resolved optical microscopy. We find the transformation rate to be highly temperature-dependent, with the fastest conversion occurring at 225 °C, where 50% of the film transformed to δ-CsPbI<small><sub>3</sub></small> within 17 minutes. To identify processing temperatures with longer phase-stability windows, we used the time- and temperature-dependent phase dynamics data to generate a time-temperature-transformation diagram for thin film CsPbI<small><sub>3</sub></small>. Processing near the peak conversion temperature must be completed within two minutes to retain black-phase purity, while processing above 280 °C or below 150 °C provides a much wider processing window with &lt;1% conversion to δ-CsPbI<small><sub>3</sub></small> occurring after 10 minutes. Conversely, it may be useful to hold CsPbI<small><sub>3</sub></small> solar cells or thin films with phase-stabilizing modifications near 225 °C to accelerate potential phase transitions and maximally stress their stability.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 38\",\"pages\":\" 19654-19659\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d5tc01126d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01126d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01126d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

无机钙钛矿CsPbI3具有1.7 eV的带隙,使其成为硅集成到串联太阳能电池中的理想补充吸收剂。然而,黑色的光活性CsPbI3相是亚稳的,在室温下很容易转变为黄色的非钙钛矿δ-CsPbI3相,这对器件的长期稳定性构成了重大挑战。在这项研究中,我们利用原位x射线衍射和时间分辨光学显微镜的组合研究了CsPbI3薄膜中这些相变的温度依赖动力学。我们发现转变速率高度依赖于温度,最快的转变发生在225℃,其中50%的薄膜在17分钟内转变为δ-CsPbI3。为了确定具有较长相稳定窗口的加工温度,我们使用时间和温度相关的相动力学数据来生成薄膜CsPbI3的时间-温度转换图。接近峰值转化温度的处理必须在两分钟内完成,以保持黑相纯度,而高于280°C或低于150°C的处理提供了更宽的处理窗口,10分钟后发生<;1%的δ-CsPbI3转化。相反,将CsPbI3太阳能电池或具有相稳定修饰的薄膜保持在225°C附近可能有用,以加速潜在的相变并最大限度地强调其稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mapping the polymorphic phase transformations of CsPbI3 perovskite thin films

Mapping the polymorphic phase transformations of CsPbI3 perovskite thin films

Inorganic perovskite CsPbI3 has a bandgap of 1.7 eV, making it an ideal complementary absorber to Si for integration into tandem solar cells. However, the black, photoactive CsPbI3 phases are metastable and readily transform into a yellow non-perovskite δ-CsPbI3 phase at room temperature, posing a significant challenge to long-term device stability. In this study, we investigate the temperature-dependent dynamics of these phase transitions in CsPbI3 thin films using a combination of in situ X-ray diffraction and time-resolved optical microscopy. We find the transformation rate to be highly temperature-dependent, with the fastest conversion occurring at 225 °C, where 50% of the film transformed to δ-CsPbI3 within 17 minutes. To identify processing temperatures with longer phase-stability windows, we used the time- and temperature-dependent phase dynamics data to generate a time-temperature-transformation diagram for thin film CsPbI3. Processing near the peak conversion temperature must be completed within two minutes to retain black-phase purity, while processing above 280 °C or below 150 °C provides a much wider processing window with <1% conversion to δ-CsPbI3 occurring after 10 minutes. Conversely, it may be useful to hold CsPbI3 solar cells or thin films with phase-stabilizing modifications near 225 °C to accelerate potential phase transitions and maximally stress their stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信