具有双重关注的级联CNN-Transformer用于味觉脑电解码。

IF 2.3 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Xueli Wang, Guoce Lv
{"title":"具有双重关注的级联CNN-Transformer用于味觉脑电解码。","authors":"Xueli Wang,&nbsp;Guoce Lv","doi":"10.1016/j.jneumeth.2025.110594","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Traditional taste evaluation methods suffer from subjective biases and limited sensor capabilities, while existing Electroencephalogram (EEG) approaches struggle to decode complex neural patterns evoked by sour, sweet, bitter, and salty stimuli due to noise sensitivity and inadequate multi-scale feature integration.</div></div><div><h3>New method</h3><div>To address this, we propose Taste EEG Decoding Network (TEDNet), a novel deep learning architecture integrating: 1) a Temporal Spatial Convolution Module (TSCM) capturing electrode-wise dependencies, 2) a Temporal Spatial Attention Module (TSAM) adaptively reweighting critical features, and 3) a Local Global Fusion Module (LGFM) combines the local features of taste EEG with the global ones.</div></div><div><h3>Results</h3><div>Evaluated on a well-controlled dataset containing 2400 EEG samples from 30 subjects, the accuracy of TEDNet is 98.92 %, the F1-score is 98.75 %, and the Kappa coefficient is 98.49 %.</div></div><div><h3>Comparison with existing methods</h3><div>While maintaining computational efficiency, TEDNet has surpassed the existing advanced convolution and self-attention methods.</div></div><div><h3>Conclusions</h3><div>This framework establishes a robust solution for objective taste perception decoding, advancing sensory evaluation in food science.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"424 ","pages":"Article 110594"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TEDNet: Cascaded CNN-transformer with dual attentions for taste EEG decoding\",\"authors\":\"Xueli Wang,&nbsp;Guoce Lv\",\"doi\":\"10.1016/j.jneumeth.2025.110594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Traditional taste evaluation methods suffer from subjective biases and limited sensor capabilities, while existing Electroencephalogram (EEG) approaches struggle to decode complex neural patterns evoked by sour, sweet, bitter, and salty stimuli due to noise sensitivity and inadequate multi-scale feature integration.</div></div><div><h3>New method</h3><div>To address this, we propose Taste EEG Decoding Network (TEDNet), a novel deep learning architecture integrating: 1) a Temporal Spatial Convolution Module (TSCM) capturing electrode-wise dependencies, 2) a Temporal Spatial Attention Module (TSAM) adaptively reweighting critical features, and 3) a Local Global Fusion Module (LGFM) combines the local features of taste EEG with the global ones.</div></div><div><h3>Results</h3><div>Evaluated on a well-controlled dataset containing 2400 EEG samples from 30 subjects, the accuracy of TEDNet is 98.92 %, the F1-score is 98.75 %, and the Kappa coefficient is 98.49 %.</div></div><div><h3>Comparison with existing methods</h3><div>While maintaining computational efficiency, TEDNet has surpassed the existing advanced convolution and self-attention methods.</div></div><div><h3>Conclusions</h3><div>This framework establishes a robust solution for objective taste perception decoding, advancing sensory evaluation in food science.</div></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"424 \",\"pages\":\"Article 110594\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027025002389\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025002389","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:传统的味觉评价方法存在主观偏差和传感器能力的限制,而现有的脑电图(EEG)方法由于噪声敏感性和多尺度特征整合不足,难以解码由酸、甜、苦和咸刺激引起的复杂神经模式。为了解决这一问题,我们提出了味觉EEG解码网络(TEDNet),这是一种新的深度学习架构,它集成了:1)捕获电极依赖关系的时空卷积模块(TSCM), 2)自适应重新加权关键特征的时空注意模块(TSAM),以及3)将味觉EEG的局部特征与全局特征相结合的局部全局融合模块(LGFM)。结果:在控制良好的数据集(包含30名受试者的2400份EEG样本)上,TEDNet的准确率为98.92%,f1得分为98.75%,Kappa系数为98.49%。与现有方法的比较:在保持计算效率的同时,TEDNet超越了现有先进的卷积和自关注方法。结论:该框架为客观味觉解码提供了可靠的解决方案,推动了食品科学感官评价的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TEDNet: Cascaded CNN-transformer with dual attentions for taste EEG decoding

Background

Traditional taste evaluation methods suffer from subjective biases and limited sensor capabilities, while existing Electroencephalogram (EEG) approaches struggle to decode complex neural patterns evoked by sour, sweet, bitter, and salty stimuli due to noise sensitivity and inadequate multi-scale feature integration.

New method

To address this, we propose Taste EEG Decoding Network (TEDNet), a novel deep learning architecture integrating: 1) a Temporal Spatial Convolution Module (TSCM) capturing electrode-wise dependencies, 2) a Temporal Spatial Attention Module (TSAM) adaptively reweighting critical features, and 3) a Local Global Fusion Module (LGFM) combines the local features of taste EEG with the global ones.

Results

Evaluated on a well-controlled dataset containing 2400 EEG samples from 30 subjects, the accuracy of TEDNet is 98.92 %, the F1-score is 98.75 %, and the Kappa coefficient is 98.49 %.

Comparison with existing methods

While maintaining computational efficiency, TEDNet has surpassed the existing advanced convolution and self-attention methods.

Conclusions

This framework establishes a robust solution for objective taste perception decoding, advancing sensory evaluation in food science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信