触控笔交互中按压力对振动触觉强度的影响。

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS
Chongyang Sun, Xuezhi Yan, Weizhi Nai, Xiaoying Sun, Qinglong Wang
{"title":"触控笔交互中按压力对振动触觉强度的影响。","authors":"Chongyang Sun, Xuezhi Yan, Weizhi Nai, Xiaoying Sun, Qinglong Wang","doi":"10.1109/TOH.2025.3615661","DOIUrl":null,"url":null,"abstract":"<p><p>Vibration feedback is a widely used form of haptic feedback in stylus-mediated interaction with screens of mobile devices. To accurately and efficiently present haptic effects, it is important to investigate key design factors that influence vibrotactile perception. In this paper, we perform experiments using two actuators (linear resonant actuator and voice-coil actuator) to investigate the effect of pressing force on perceived intensity with various combinations of factors such as actuator orientation, frequency of the driving signals, baseline perceived intensity, and user's motion speed in the vibrotactile feedback of stylus-mediated interaction. The results show that in stationary condition when the actuator is placed with its long side perpendicular to the axis of the stylus, the larger the pressing force is, the weaker the perceived intensity is; when the actuator is placed with its long side parallel to the axis of the stylus, the perceived intensity increases slightly with increasing pressing force. Another experiment is conducted and shows that the perceived intensity is more uniform when the amplitude is dynamically changed with the variation of the pressing force. For the moving conditions, the changes in pressing force have almost no effect on the perceived intensity. The results provide knowledge about the perceived intensity of vibrations in the stylus-mediated vibrotactile rendering.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Pressing Force on Perceived Vibrotactile Intensity in Stylus-mediated Interaction.\",\"authors\":\"Chongyang Sun, Xuezhi Yan, Weizhi Nai, Xiaoying Sun, Qinglong Wang\",\"doi\":\"10.1109/TOH.2025.3615661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vibration feedback is a widely used form of haptic feedback in stylus-mediated interaction with screens of mobile devices. To accurately and efficiently present haptic effects, it is important to investigate key design factors that influence vibrotactile perception. In this paper, we perform experiments using two actuators (linear resonant actuator and voice-coil actuator) to investigate the effect of pressing force on perceived intensity with various combinations of factors such as actuator orientation, frequency of the driving signals, baseline perceived intensity, and user's motion speed in the vibrotactile feedback of stylus-mediated interaction. The results show that in stationary condition when the actuator is placed with its long side perpendicular to the axis of the stylus, the larger the pressing force is, the weaker the perceived intensity is; when the actuator is placed with its long side parallel to the axis of the stylus, the perceived intensity increases slightly with increasing pressing force. Another experiment is conducted and shows that the perceived intensity is more uniform when the amplitude is dynamically changed with the variation of the pressing force. For the moving conditions, the changes in pressing force have almost no effect on the perceived intensity. The results provide knowledge about the perceived intensity of vibrations in the stylus-mediated vibrotactile rendering.</p>\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TOH.2025.3615661\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2025.3615661","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

振动反馈是一种广泛应用于触控笔与移动设备屏幕交互的触觉反馈形式。为了准确、高效地呈现触觉效果,研究影响振动触觉感知的关键设计因素十分重要。本文采用线性谐振致动器和音圈致动器两种致动器进行实验,研究在触控笔介导的振动触觉反馈中,在致动器方向、驱动信号频率、基线感知强度和用户运动速度等因素的不同组合下,按压力对感知强度的影响。结果表明:在静止状态下,当执行器长侧垂直于触控笔轴线放置时,施加的压力越大,感知强度越弱;当执行器长侧平行于触控笔轴线放置时,随着按压力的增大,感知强度略有增加。另一实验表明,当振幅随压力的变化而动态变化时,感知强度更加均匀。在运动条件下,压力的变化对感知强度几乎没有影响。结果提供了有关在触控笔介导的振动触觉渲染中感知振动强度的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Pressing Force on Perceived Vibrotactile Intensity in Stylus-mediated Interaction.

Vibration feedback is a widely used form of haptic feedback in stylus-mediated interaction with screens of mobile devices. To accurately and efficiently present haptic effects, it is important to investigate key design factors that influence vibrotactile perception. In this paper, we perform experiments using two actuators (linear resonant actuator and voice-coil actuator) to investigate the effect of pressing force on perceived intensity with various combinations of factors such as actuator orientation, frequency of the driving signals, baseline perceived intensity, and user's motion speed in the vibrotactile feedback of stylus-mediated interaction. The results show that in stationary condition when the actuator is placed with its long side perpendicular to the axis of the stylus, the larger the pressing force is, the weaker the perceived intensity is; when the actuator is placed with its long side parallel to the axis of the stylus, the perceived intensity increases slightly with increasing pressing force. Another experiment is conducted and shows that the perceived intensity is more uniform when the amplitude is dynamically changed with the variation of the pressing force. For the moving conditions, the changes in pressing force have almost no effect on the perceived intensity. The results provide knowledge about the perceived intensity of vibrations in the stylus-mediated vibrotactile rendering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Haptics
IEEE Transactions on Haptics COMPUTER SCIENCE, CYBERNETICS-
CiteScore
5.90
自引率
13.80%
发文量
109
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信