Timothy J. Ruggles , William G. Gilliland , David T. Fullwood , Josh Kacher
{"title":"在亚微米分辨率下绘制晶体材料局部应力和位错的HR-EBSD技术综述","authors":"Timothy J. Ruggles , William G. Gilliland , David T. Fullwood , Josh Kacher","doi":"10.1016/j.pmatsci.2025.101585","DOIUrl":null,"url":null,"abstract":"<div><div>High resolution electron backscatter diffraction (HR-EBSD) is a technique used to map elastic strain, crystallographic orientation and dislocation density in a scanning electron microscope. This review covers the background and mathematics of this technique, contextualizing it within the broader landscape of EBSD techniques and other materials characterization methods. Several case studies are presented showing the application of HR-EBSD to the study of plasticity in metals, failure analysis in microelectronics and defect quantification in thin films. This is intended to be a comprehensive resource for researchers developing this technique as well as an introduction to those wishing to apply it.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"157 ","pages":"Article 101585"},"PeriodicalIF":40.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An overview of HR-EBSD techniques for mapping local stress and dislocations in crystalline materials at sub-micron resolution\",\"authors\":\"Timothy J. Ruggles , William G. Gilliland , David T. Fullwood , Josh Kacher\",\"doi\":\"10.1016/j.pmatsci.2025.101585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High resolution electron backscatter diffraction (HR-EBSD) is a technique used to map elastic strain, crystallographic orientation and dislocation density in a scanning electron microscope. This review covers the background and mathematics of this technique, contextualizing it within the broader landscape of EBSD techniques and other materials characterization methods. Several case studies are presented showing the application of HR-EBSD to the study of plasticity in metals, failure analysis in microelectronics and defect quantification in thin films. This is intended to be a comprehensive resource for researchers developing this technique as well as an introduction to those wishing to apply it.</div></div>\",\"PeriodicalId\":411,\"journal\":{\"name\":\"Progress in Materials Science\",\"volume\":\"157 \",\"pages\":\"Article 101585\"},\"PeriodicalIF\":40.0000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S007964252500163X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007964252500163X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
An overview of HR-EBSD techniques for mapping local stress and dislocations in crystalline materials at sub-micron resolution
High resolution electron backscatter diffraction (HR-EBSD) is a technique used to map elastic strain, crystallographic orientation and dislocation density in a scanning electron microscope. This review covers the background and mathematics of this technique, contextualizing it within the broader landscape of EBSD techniques and other materials characterization methods. Several case studies are presented showing the application of HR-EBSD to the study of plasticity in metals, failure analysis in microelectronics and defect quantification in thin films. This is intended to be a comprehensive resource for researchers developing this technique as well as an introduction to those wishing to apply it.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.