半参数模型在建筑能耗可解释精确回归分析中的实验应用

IF 7.1 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Simone Eiraudo , Alfonso Gijón , Antonio Manjavacas , Daniele Salvatore Schiera , Luca Barbierato , Miguel Molina-Solana , Juan Gómez-Romero , Roberta Giannantonio , Lorenzo Bottaccioli , Andrea Lanzini
{"title":"半参数模型在建筑能耗可解释精确回归分析中的实验应用","authors":"Simone Eiraudo ,&nbsp;Alfonso Gijón ,&nbsp;Antonio Manjavacas ,&nbsp;Daniele Salvatore Schiera ,&nbsp;Luca Barbierato ,&nbsp;Miguel Molina-Solana ,&nbsp;Juan Gómez-Romero ,&nbsp;Roberta Giannantonio ,&nbsp;Lorenzo Bottaccioli ,&nbsp;Andrea Lanzini","doi":"10.1016/j.enbuild.2025.116495","DOIUrl":null,"url":null,"abstract":"<div><div>Regression analysis is a versatile tool with numerous applications across diverse domains. Its utility extends to several tasks, including forecasting, inverse modeling, anomaly detection, and pattern identification. Over the years, researchers have mainly focused on two regression categories: parametric and non-parametric analysis. In light of the benefits and drawbacks of both methods, this work introduces a semi-parametric approach, combining regression accuracy and interpretability. This is achieved by designing a hybrid model, that includes a physics-based sub-model and a neural network. The proposed data-driven pipeline is applied to a relevant case study from the energy sector, namely the analysis of building energy consumption, achieving high accuracy compared to the parametric approach. Results demonstrate an increase in the mean coefficient of determination, from 0.77 to 0.94, with a MAPE drop from 5.5 % to 2.2 %. Meanwhile, the semi-parametric model allows the assessment of the thermal behavior of the buildings, thereby offering an improvement over black-box approaches.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"349 ","pages":"Article 116495"},"PeriodicalIF":7.1000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental application of a semi-parametric model for interpretable and accurate egression analysis of building energy consumption\",\"authors\":\"Simone Eiraudo ,&nbsp;Alfonso Gijón ,&nbsp;Antonio Manjavacas ,&nbsp;Daniele Salvatore Schiera ,&nbsp;Luca Barbierato ,&nbsp;Miguel Molina-Solana ,&nbsp;Juan Gómez-Romero ,&nbsp;Roberta Giannantonio ,&nbsp;Lorenzo Bottaccioli ,&nbsp;Andrea Lanzini\",\"doi\":\"10.1016/j.enbuild.2025.116495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Regression analysis is a versatile tool with numerous applications across diverse domains. Its utility extends to several tasks, including forecasting, inverse modeling, anomaly detection, and pattern identification. Over the years, researchers have mainly focused on two regression categories: parametric and non-parametric analysis. In light of the benefits and drawbacks of both methods, this work introduces a semi-parametric approach, combining regression accuracy and interpretability. This is achieved by designing a hybrid model, that includes a physics-based sub-model and a neural network. The proposed data-driven pipeline is applied to a relevant case study from the energy sector, namely the analysis of building energy consumption, achieving high accuracy compared to the parametric approach. Results demonstrate an increase in the mean coefficient of determination, from 0.77 to 0.94, with a MAPE drop from 5.5 % to 2.2 %. Meanwhile, the semi-parametric model allows the assessment of the thermal behavior of the buildings, thereby offering an improvement over black-box approaches.</div></div>\",\"PeriodicalId\":11641,\"journal\":{\"name\":\"Energy and Buildings\",\"volume\":\"349 \",\"pages\":\"Article 116495\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378778825012253\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825012253","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

回归分析是一种通用的工具,在不同的领域有许多应用。它的效用扩展到几个任务,包括预测、逆建模、异常检测和模式识别。多年来,研究人员主要集中在两类回归:参数分析和非参数分析。鉴于这两种方法的优缺点,本工作引入了一种结合回归精度和可解释性的半参数方法。这是通过设计一个混合模型来实现的,该模型包括一个基于物理的子模型和一个神经网络。所提出的数据驱动管道应用于能源部门的相关案例研究,即建筑能耗分析,与参数化方法相比具有更高的准确性。结果表明,平均决定系数从0.77增加到0.94,MAPE从5.5%下降到2.2%。同时,半参数模型允许对建筑物的热行为进行评估,从而提供了对黑盒方法的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental application of a semi-parametric model for interpretable and accurate egression analysis of building energy consumption
Regression analysis is a versatile tool with numerous applications across diverse domains. Its utility extends to several tasks, including forecasting, inverse modeling, anomaly detection, and pattern identification. Over the years, researchers have mainly focused on two regression categories: parametric and non-parametric analysis. In light of the benefits and drawbacks of both methods, this work introduces a semi-parametric approach, combining regression accuracy and interpretability. This is achieved by designing a hybrid model, that includes a physics-based sub-model and a neural network. The proposed data-driven pipeline is applied to a relevant case study from the energy sector, namely the analysis of building energy consumption, achieving high accuracy compared to the parametric approach. Results demonstrate an increase in the mean coefficient of determination, from 0.77 to 0.94, with a MAPE drop from 5.5 % to 2.2 %. Meanwhile, the semi-parametric model allows the assessment of the thermal behavior of the buildings, thereby offering an improvement over black-box approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信