Mickely Liuti Dealis Gomes, Leandro Afonso, Kawany Roque Basso, Leonardo Cruz Alves, Enri Josué Navia Macías, Sueli Fumie Yamada-Ogatta, Ana Carolina Guidi, João Carlos Palazzo de Mello, Fábio Goulart Andrade, Luís Fernando Cabeça, Martha Viviana Torres Cely, Galdino Andrade
{"title":"脂质体氟藻蛋白C:体外和体内耐多药肺炎克雷伯菌血症模型的理化性质、细胞毒性和抗菌活性","authors":"Mickely Liuti Dealis Gomes, Leandro Afonso, Kawany Roque Basso, Leonardo Cruz Alves, Enri Josué Navia Macías, Sueli Fumie Yamada-Ogatta, Ana Carolina Guidi, João Carlos Palazzo de Mello, Fábio Goulart Andrade, Luís Fernando Cabeça, Martha Viviana Torres Cely, Galdino Andrade","doi":"10.3390/antibiotics14090948","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> Antimicrobial resistance has become a global concern, and few new antimicrobials are currently being developed. Fluopsin C has proven broad-spectrum activity, being a promising candidate for new antimicrobial development. To optimize antimicrobial activity, this research aimed at fluopsin C (Flp) encapsulation in liposomes to achieve controlled release and reduce cytotoxicity. <b>Methods:</b> Liposomal formulations were prepared by extruding formulations based on soy phosphatidylcholine (SPC) or poly (ethylene glycol)-distearoylphosphatidylethanolamine (DSPE-PEG) plus cholesterol, and were characterized by their size, polydispersity index, zeta potential, encapsulation efficiency, shelf-life stability, in vitro release profile, cytotoxicity, and antimicrobial activity against <i>Klebsiella pneumoniae</i> in vitro and in vivo. <b>Results:</b> The results indicated that the DSPE-PEG DMSO+Flp formulation presented superior physicochemical stability and unaltered antimicrobial activity. In vitro, CC<sub>50</sub> decreased by 54%. No lethal dose was obtained in mice within the concentration range tested. The most effective doses in vivo were 2 × 2 mg/kg for free fluopsin C and 1 × 2 mg/kg for DSPE-PEG DMSO+Flp, resulting in a 40% reduction in mortality from bacteremia. Only discrete inflammatory infiltration was detected in the liver, while kidney necrosis ranged from discrete to moderate. Encapsulation of fluopsin C in liposomes showed promising features supporting to use against infections by MDR <i>K. pneumoniae</i>.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"14 9","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466551/pdf/","citationCount":"0","resultStr":"{\"title\":\"Liposomal Fluopsin C: Physicochemical Properties, Cytotoxicity, and Antibacterial Activity In Vitro and over In Vivo MDR <i>Klebsiella pneumoniae</i> Bacteremia Model.\",\"authors\":\"Mickely Liuti Dealis Gomes, Leandro Afonso, Kawany Roque Basso, Leonardo Cruz Alves, Enri Josué Navia Macías, Sueli Fumie Yamada-Ogatta, Ana Carolina Guidi, João Carlos Palazzo de Mello, Fábio Goulart Andrade, Luís Fernando Cabeça, Martha Viviana Torres Cely, Galdino Andrade\",\"doi\":\"10.3390/antibiotics14090948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Introduction:</b> Antimicrobial resistance has become a global concern, and few new antimicrobials are currently being developed. Fluopsin C has proven broad-spectrum activity, being a promising candidate for new antimicrobial development. To optimize antimicrobial activity, this research aimed at fluopsin C (Flp) encapsulation in liposomes to achieve controlled release and reduce cytotoxicity. <b>Methods:</b> Liposomal formulations were prepared by extruding formulations based on soy phosphatidylcholine (SPC) or poly (ethylene glycol)-distearoylphosphatidylethanolamine (DSPE-PEG) plus cholesterol, and were characterized by their size, polydispersity index, zeta potential, encapsulation efficiency, shelf-life stability, in vitro release profile, cytotoxicity, and antimicrobial activity against <i>Klebsiella pneumoniae</i> in vitro and in vivo. <b>Results:</b> The results indicated that the DSPE-PEG DMSO+Flp formulation presented superior physicochemical stability and unaltered antimicrobial activity. In vitro, CC<sub>50</sub> decreased by 54%. No lethal dose was obtained in mice within the concentration range tested. The most effective doses in vivo were 2 × 2 mg/kg for free fluopsin C and 1 × 2 mg/kg for DSPE-PEG DMSO+Flp, resulting in a 40% reduction in mortality from bacteremia. Only discrete inflammatory infiltration was detected in the liver, while kidney necrosis ranged from discrete to moderate. Encapsulation of fluopsin C in liposomes showed promising features supporting to use against infections by MDR <i>K. pneumoniae</i>.</p>\",\"PeriodicalId\":54246,\"journal\":{\"name\":\"Antibiotics-Basel\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466551/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antibiotics-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antibiotics14090948\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics14090948","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Liposomal Fluopsin C: Physicochemical Properties, Cytotoxicity, and Antibacterial Activity In Vitro and over In Vivo MDR Klebsiella pneumoniae Bacteremia Model.
Introduction: Antimicrobial resistance has become a global concern, and few new antimicrobials are currently being developed. Fluopsin C has proven broad-spectrum activity, being a promising candidate for new antimicrobial development. To optimize antimicrobial activity, this research aimed at fluopsin C (Flp) encapsulation in liposomes to achieve controlled release and reduce cytotoxicity. Methods: Liposomal formulations were prepared by extruding formulations based on soy phosphatidylcholine (SPC) or poly (ethylene glycol)-distearoylphosphatidylethanolamine (DSPE-PEG) plus cholesterol, and were characterized by their size, polydispersity index, zeta potential, encapsulation efficiency, shelf-life stability, in vitro release profile, cytotoxicity, and antimicrobial activity against Klebsiella pneumoniae in vitro and in vivo. Results: The results indicated that the DSPE-PEG DMSO+Flp formulation presented superior physicochemical stability and unaltered antimicrobial activity. In vitro, CC50 decreased by 54%. No lethal dose was obtained in mice within the concentration range tested. The most effective doses in vivo were 2 × 2 mg/kg for free fluopsin C and 1 × 2 mg/kg for DSPE-PEG DMSO+Flp, resulting in a 40% reduction in mortality from bacteremia. Only discrete inflammatory infiltration was detected in the liver, while kidney necrosis ranged from discrete to moderate. Encapsulation of fluopsin C in liposomes showed promising features supporting to use against infections by MDR K. pneumoniae.
Antibiotics-BaselPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍:
Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.