Minah Chang, Sara Sorella, Cristiano Crescentini, Alessandro Grecucci
{"title":"灰质和白质网络预测正念和走神特征:数据融合机器学习方法。","authors":"Minah Chang, Sara Sorella, Cristiano Crescentini, Alessandro Grecucci","doi":"10.3390/brainsci15090953","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mindfulness and mind wandering are cognitive traits central to attentional control and psychological well-being, yet their neural underpinnings are yet to be elucidated. This study aimed to identify structural brain networks comprising gray matter (GM) and white matter (WM) that predict individual differences in mindfulness and distinct mind wandering tendencies (deliberate and spontaneous).</p><p><strong>Methods: </strong>Using structural MRI data and self-report measures from 76 participants, we applied an unsupervised data-fusion machine learning technique (parallel independent component analysis) to identify GM and WM networks associated with mindfulness and mind wandering traits.</p><p><strong>Results: </strong>Our analysis revealed several distinct brain networks linked to these cognitive constructs. Specifically, one GM network involving subcortical regions, including the caudate and thalamus, positively predicted mindfulness and deliberate mind wandering, while negatively influencing spontaneous mind wandering through the mediating role of the mindfulness facet \"acting with awareness.\" In addition, two separate WM networks, predominantly involving frontoparietal and temporal regions, were directly associated with reduced spontaneous mind wandering.</p><p><strong>Conclusions: </strong>These findings advance our current knowledge by demonstrating that specific GM and WM structures are involved in mindfulness and different forms of mind wandering. Our results also show that the \"acting with awareness\" facet has a mediating effect on spontaneous mind wandering, which provides supporting evidence for attentional and executive control models. These new insights into the neuroanatomical correlates of mindfulness and mind wandering have implications for ongoing research in the growing topic of mindfulness and mind wandering, mindfulness-based interventions, and other clinical applications.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468469/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gray and White Matter Networks Predict Mindfulness and Mind Wandering Traits: A Data Fusion Machine Learning Approach.\",\"authors\":\"Minah Chang, Sara Sorella, Cristiano Crescentini, Alessandro Grecucci\",\"doi\":\"10.3390/brainsci15090953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mindfulness and mind wandering are cognitive traits central to attentional control and psychological well-being, yet their neural underpinnings are yet to be elucidated. This study aimed to identify structural brain networks comprising gray matter (GM) and white matter (WM) that predict individual differences in mindfulness and distinct mind wandering tendencies (deliberate and spontaneous).</p><p><strong>Methods: </strong>Using structural MRI data and self-report measures from 76 participants, we applied an unsupervised data-fusion machine learning technique (parallel independent component analysis) to identify GM and WM networks associated with mindfulness and mind wandering traits.</p><p><strong>Results: </strong>Our analysis revealed several distinct brain networks linked to these cognitive constructs. Specifically, one GM network involving subcortical regions, including the caudate and thalamus, positively predicted mindfulness and deliberate mind wandering, while negatively influencing spontaneous mind wandering through the mediating role of the mindfulness facet \\\"acting with awareness.\\\" In addition, two separate WM networks, predominantly involving frontoparietal and temporal regions, were directly associated with reduced spontaneous mind wandering.</p><p><strong>Conclusions: </strong>These findings advance our current knowledge by demonstrating that specific GM and WM structures are involved in mindfulness and different forms of mind wandering. Our results also show that the \\\"acting with awareness\\\" facet has a mediating effect on spontaneous mind wandering, which provides supporting evidence for attentional and executive control models. These new insights into the neuroanatomical correlates of mindfulness and mind wandering have implications for ongoing research in the growing topic of mindfulness and mind wandering, mindfulness-based interventions, and other clinical applications.</p>\",\"PeriodicalId\":9095,\"journal\":{\"name\":\"Brain Sciences\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468469/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/brainsci15090953\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15090953","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Gray and White Matter Networks Predict Mindfulness and Mind Wandering Traits: A Data Fusion Machine Learning Approach.
Background: Mindfulness and mind wandering are cognitive traits central to attentional control and psychological well-being, yet their neural underpinnings are yet to be elucidated. This study aimed to identify structural brain networks comprising gray matter (GM) and white matter (WM) that predict individual differences in mindfulness and distinct mind wandering tendencies (deliberate and spontaneous).
Methods: Using structural MRI data and self-report measures from 76 participants, we applied an unsupervised data-fusion machine learning technique (parallel independent component analysis) to identify GM and WM networks associated with mindfulness and mind wandering traits.
Results: Our analysis revealed several distinct brain networks linked to these cognitive constructs. Specifically, one GM network involving subcortical regions, including the caudate and thalamus, positively predicted mindfulness and deliberate mind wandering, while negatively influencing spontaneous mind wandering through the mediating role of the mindfulness facet "acting with awareness." In addition, two separate WM networks, predominantly involving frontoparietal and temporal regions, were directly associated with reduced spontaneous mind wandering.
Conclusions: These findings advance our current knowledge by demonstrating that specific GM and WM structures are involved in mindfulness and different forms of mind wandering. Our results also show that the "acting with awareness" facet has a mediating effect on spontaneous mind wandering, which provides supporting evidence for attentional and executive control models. These new insights into the neuroanatomical correlates of mindfulness and mind wandering have implications for ongoing research in the growing topic of mindfulness and mind wandering, mindfulness-based interventions, and other clinical applications.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.