Shanhua Han, Quan Tao, Boyu Zhang, Yifan Lv, Zhihao Li, Yu Luo
{"title":"利用静息状态功能MRI探讨病变网络相似性在急性缺血性脑卒中康复中的神经代偿作用。","authors":"Shanhua Han, Quan Tao, Boyu Zhang, Yifan Lv, Zhihao Li, Yu Luo","doi":"10.3390/brainsci15090964","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Neural compensation, in which healthy brain regions take over functions lost due to lesions, is a potential biomarker for functional recovery after stroke. However, previous neuroimaging studies often speculated on neural compensation simply based on greater measures in patients (compared to healthy controls) without demonstrating a more direct link between these measures and the functional recovery. Because taking over the function of a lesion region means taking on a similar role as that lesion region in its functional network, the present study attempted to explore neural compensation based on the similarity of functional connectivity (FC) patterns between a healthy regions and lesion regions. <b>Methods</b>: Seventeen stroke patients (13M4F, 63.2 ± 9.1 y.o.) underwent three resting-state functional MRI (rs-fMRI) sessions during rehabilitation. FC patterns of their lesion regions were derived by lesion network analysis; and these patterns were correlated with healthy FC patterns derived from each brain voxel of 51 healthy subjects (32M19F, 61.0 ± 14.3 y.o.) for the assessment of pattern similarity. <b>Results</b>: We identified five healthy regions showing decreasing FC similarity (29-54%, all corrected <i>p</i> < 0.05, effect size η<sup>2</sup>: 0.10-0.20) to the lesion network over time. These decreasing similarities were associated with increasing behavioral scores on activities of daily living (ADL, <i>p</i> < 0.001, η<sup>2</sup> = 0.90), suggesting greater neural compensation at early-stage post-stroke and reduced compensation toward the end of effective rehabilitation. <b>Conclusions</b>: Besides direct FC measures, the present results propose an alternative biomarker of neural compensation in functional recovery from stroke. For sensorimotor recoveries like ADL, this biomarker could be more sensitive than direct measures of lesion connectivity in the motor network.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468017/pdf/","citationCount":"0","resultStr":"{\"title\":\"Probing Neural Compensation in Rehabilitation of Acute Ischemic Stroke with Lesion Network Similarity Using Resting State Functional MRI.\",\"authors\":\"Shanhua Han, Quan Tao, Boyu Zhang, Yifan Lv, Zhihao Li, Yu Luo\",\"doi\":\"10.3390/brainsci15090964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives</b>: Neural compensation, in which healthy brain regions take over functions lost due to lesions, is a potential biomarker for functional recovery after stroke. However, previous neuroimaging studies often speculated on neural compensation simply based on greater measures in patients (compared to healthy controls) without demonstrating a more direct link between these measures and the functional recovery. Because taking over the function of a lesion region means taking on a similar role as that lesion region in its functional network, the present study attempted to explore neural compensation based on the similarity of functional connectivity (FC) patterns between a healthy regions and lesion regions. <b>Methods</b>: Seventeen stroke patients (13M4F, 63.2 ± 9.1 y.o.) underwent three resting-state functional MRI (rs-fMRI) sessions during rehabilitation. FC patterns of their lesion regions were derived by lesion network analysis; and these patterns were correlated with healthy FC patterns derived from each brain voxel of 51 healthy subjects (32M19F, 61.0 ± 14.3 y.o.) for the assessment of pattern similarity. <b>Results</b>: We identified five healthy regions showing decreasing FC similarity (29-54%, all corrected <i>p</i> < 0.05, effect size η<sup>2</sup>: 0.10-0.20) to the lesion network over time. These decreasing similarities were associated with increasing behavioral scores on activities of daily living (ADL, <i>p</i> < 0.001, η<sup>2</sup> = 0.90), suggesting greater neural compensation at early-stage post-stroke and reduced compensation toward the end of effective rehabilitation. <b>Conclusions</b>: Besides direct FC measures, the present results propose an alternative biomarker of neural compensation in functional recovery from stroke. For sensorimotor recoveries like ADL, this biomarker could be more sensitive than direct measures of lesion connectivity in the motor network.</p>\",\"PeriodicalId\":9095,\"journal\":{\"name\":\"Brain Sciences\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468017/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/brainsci15090964\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15090964","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Probing Neural Compensation in Rehabilitation of Acute Ischemic Stroke with Lesion Network Similarity Using Resting State Functional MRI.
Background/Objectives: Neural compensation, in which healthy brain regions take over functions lost due to lesions, is a potential biomarker for functional recovery after stroke. However, previous neuroimaging studies often speculated on neural compensation simply based on greater measures in patients (compared to healthy controls) without demonstrating a more direct link between these measures and the functional recovery. Because taking over the function of a lesion region means taking on a similar role as that lesion region in its functional network, the present study attempted to explore neural compensation based on the similarity of functional connectivity (FC) patterns between a healthy regions and lesion regions. Methods: Seventeen stroke patients (13M4F, 63.2 ± 9.1 y.o.) underwent three resting-state functional MRI (rs-fMRI) sessions during rehabilitation. FC patterns of their lesion regions were derived by lesion network analysis; and these patterns were correlated with healthy FC patterns derived from each brain voxel of 51 healthy subjects (32M19F, 61.0 ± 14.3 y.o.) for the assessment of pattern similarity. Results: We identified five healthy regions showing decreasing FC similarity (29-54%, all corrected p < 0.05, effect size η2: 0.10-0.20) to the lesion network over time. These decreasing similarities were associated with increasing behavioral scores on activities of daily living (ADL, p < 0.001, η2 = 0.90), suggesting greater neural compensation at early-stage post-stroke and reduced compensation toward the end of effective rehabilitation. Conclusions: Besides direct FC measures, the present results propose an alternative biomarker of neural compensation in functional recovery from stroke. For sensorimotor recoveries like ADL, this biomarker could be more sensitive than direct measures of lesion connectivity in the motor network.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.