Aleksandar Tenev, Silvana Markovska-Simoska, Andreas Müller, Igor Mishkovski
{"title":"QEEG的熵和复杂性揭示了自闭症的视觉加工特征:一项神经反馈导向的临床鉴别研究。","authors":"Aleksandar Tenev, Silvana Markovska-Simoska, Andreas Müller, Igor Mishkovski","doi":"10.3390/brainsci15090951","DOIUrl":null,"url":null,"abstract":"<p><p>(1) Background: Quantitative EEG (QEEG) offers potential for identifying objective neurophysiological biomarkers in psychiatric disorders and guiding neurofeedback interventions. This study examined whether three nonlinear QEEG metrics-Lempel-Ziv Complexity, Tsallis Entropy, and Renyi Entropy-can distinguish children with autism spectrum disorder (ASD) from typically developing (TD) peers, and assessed their relevance for neurofeedback targeting. (2) Methods: EEG recordings from 19 scalp channels were analyzed in children with ASD and TD. The three nonlinear metrics were computed for each channel. Group differences were evaluated statistically, while machine learning classifiers assessed discriminative performance. Dimensionality reduction with t-distributed Stochastic Neighbor Embedding (t-SNE) was applied to visualize clustering. (3) Results: All metrics showed significant group differences across multiple channels. Machine learning classifiers achieved >90% accuracy, demonstrating robust discriminative power. t-SNE revealed distinct ASD and TD clustering, with nonlinear separability in specific channels. Visual processing-related channels were prominent contributors to both classifier predictions and t-SNE cluster boundaries. (4) Conclusions: Nonlinear QEEG metrics, particularly from visual processing regions, differentiate ASD from TD with high accuracy and may serve as objective biomarkers for neurofeedback. Combining complexity and entropy measures with machine learning and visualization techniques offers a relevant framework for ASD diagnosis and personalized intervention planning.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468508/pdf/","citationCount":"0","resultStr":"{\"title\":\"Entropy and Complexity in QEEG Reveal Visual Processing Signatures in Autism: A Neurofeedback-Oriented and Clinical Differentiation Study.\",\"authors\":\"Aleksandar Tenev, Silvana Markovska-Simoska, Andreas Müller, Igor Mishkovski\",\"doi\":\"10.3390/brainsci15090951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>(1) Background: Quantitative EEG (QEEG) offers potential for identifying objective neurophysiological biomarkers in psychiatric disorders and guiding neurofeedback interventions. This study examined whether three nonlinear QEEG metrics-Lempel-Ziv Complexity, Tsallis Entropy, and Renyi Entropy-can distinguish children with autism spectrum disorder (ASD) from typically developing (TD) peers, and assessed their relevance for neurofeedback targeting. (2) Methods: EEG recordings from 19 scalp channels were analyzed in children with ASD and TD. The three nonlinear metrics were computed for each channel. Group differences were evaluated statistically, while machine learning classifiers assessed discriminative performance. Dimensionality reduction with t-distributed Stochastic Neighbor Embedding (t-SNE) was applied to visualize clustering. (3) Results: All metrics showed significant group differences across multiple channels. Machine learning classifiers achieved >90% accuracy, demonstrating robust discriminative power. t-SNE revealed distinct ASD and TD clustering, with nonlinear separability in specific channels. Visual processing-related channels were prominent contributors to both classifier predictions and t-SNE cluster boundaries. (4) Conclusions: Nonlinear QEEG metrics, particularly from visual processing regions, differentiate ASD from TD with high accuracy and may serve as objective biomarkers for neurofeedback. Combining complexity and entropy measures with machine learning and visualization techniques offers a relevant framework for ASD diagnosis and personalized intervention planning.</p>\",\"PeriodicalId\":9095,\"journal\":{\"name\":\"Brain Sciences\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468508/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/brainsci15090951\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15090951","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Entropy and Complexity in QEEG Reveal Visual Processing Signatures in Autism: A Neurofeedback-Oriented and Clinical Differentiation Study.
(1) Background: Quantitative EEG (QEEG) offers potential for identifying objective neurophysiological biomarkers in psychiatric disorders and guiding neurofeedback interventions. This study examined whether three nonlinear QEEG metrics-Lempel-Ziv Complexity, Tsallis Entropy, and Renyi Entropy-can distinguish children with autism spectrum disorder (ASD) from typically developing (TD) peers, and assessed their relevance for neurofeedback targeting. (2) Methods: EEG recordings from 19 scalp channels were analyzed in children with ASD and TD. The three nonlinear metrics were computed for each channel. Group differences were evaluated statistically, while machine learning classifiers assessed discriminative performance. Dimensionality reduction with t-distributed Stochastic Neighbor Embedding (t-SNE) was applied to visualize clustering. (3) Results: All metrics showed significant group differences across multiple channels. Machine learning classifiers achieved >90% accuracy, demonstrating robust discriminative power. t-SNE revealed distinct ASD and TD clustering, with nonlinear separability in specific channels. Visual processing-related channels were prominent contributors to both classifier predictions and t-SNE cluster boundaries. (4) Conclusions: Nonlinear QEEG metrics, particularly from visual processing regions, differentiate ASD from TD with high accuracy and may serve as objective biomarkers for neurofeedback. Combining complexity and entropy measures with machine learning and visualization techniques offers a relevant framework for ASD diagnosis and personalized intervention planning.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.