{"title":"严重创伤性脑损伤成人死亡率的潜在预测因素。","authors":"Rachel Marta, Yaroslavska Svitlana, Kreniov Konstiantyn, Mamonowa Maryna, Dobrorodniy Andriy, Oliynyk Oleksandr","doi":"10.3390/brainsci15091014","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Severe traumatic brain injury (sTBI) in adults remains a leading cause of mortality and disability worldwide. Early identification of reliable predictors of outcome is crucial for risk stratification and ICU management. Disturbances of hemostasis and metabolic factors such as body mass index (BMI) have been proposed as potential prognostic markers, but evidence remains limited.</p><p><strong>Methods: </strong>We conducted a retrospective, multicenter study including 307 adult patients with sTBI (Glasgow Coma Scale ≤ 8) admitted to three tertiary intensive care units in Ukraine between September 2023 and July 2024. All patients underwent surgical evacuation of hematomas and decompressive craniotomy. Laboratory parameters (APTT, INR, fibrinogen, platelets, D-dimer) were collected within 12 h of admission. BMI was calculated from measured height and weight. Predictive modeling was performed using L1-regularized logistic regression and Random Forest algorithms. Class imbalance was addressed with SMOTE. Model performance was assessed by AUC, accuracy, calibration, and feature importance.</p><p><strong>Results: </strong>The 28-day all-cause mortality was 32.9%. Compared with survivors, non-survivors had significantly lower GCS scores and higher INR, D-dimer, and APTT values. Very high VIF values indicated severe multicollinearity between predictors. Classical logistic regression was not estimable due to perfect separation; therefore, regularized logistic regression and Random Forest were applied. Random Forest demonstrated higher performance (AUC 0.95, accuracy ≈ 90%) than logistic regression (AUC 0.77, accuracy 70.1%), although results must be interpreted cautiously given the small sample size and potential overfitting. Feature importance analysis identified increased BMI, prolonged APTT, and elevated D-dimer as leading predictors of mortality. Sensitivity analysis excluding BMI still yielded strong performance (AUC 0.91), confirming the prognostic value of coagulation markers and GCS.</p><p><strong>Conclusions: </strong>Mortality in adult sTBI patients was strongly associated with impaired hemostasis, obesity, and low neurological status at admission. Machine learning-based modeling demonstrated promising predictive accuracy but is exploratory in nature. Findings should be interpreted with caution due to retrospective design, severe multicollinearity, potential overfitting, and absence of external validation. Larger, prospective, multicenter studies are needed to confirm these results and improve early risk stratification in severe TBI.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468983/pdf/","citationCount":"0","resultStr":"{\"title\":\"Potential Predictors of Mortality in Adults with Severe Traumatic Brain Injury.\",\"authors\":\"Rachel Marta, Yaroslavska Svitlana, Kreniov Konstiantyn, Mamonowa Maryna, Dobrorodniy Andriy, Oliynyk Oleksandr\",\"doi\":\"10.3390/brainsci15091014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Severe traumatic brain injury (sTBI) in adults remains a leading cause of mortality and disability worldwide. Early identification of reliable predictors of outcome is crucial for risk stratification and ICU management. Disturbances of hemostasis and metabolic factors such as body mass index (BMI) have been proposed as potential prognostic markers, but evidence remains limited.</p><p><strong>Methods: </strong>We conducted a retrospective, multicenter study including 307 adult patients with sTBI (Glasgow Coma Scale ≤ 8) admitted to three tertiary intensive care units in Ukraine between September 2023 and July 2024. All patients underwent surgical evacuation of hematomas and decompressive craniotomy. Laboratory parameters (APTT, INR, fibrinogen, platelets, D-dimer) were collected within 12 h of admission. BMI was calculated from measured height and weight. Predictive modeling was performed using L1-regularized logistic regression and Random Forest algorithms. Class imbalance was addressed with SMOTE. Model performance was assessed by AUC, accuracy, calibration, and feature importance.</p><p><strong>Results: </strong>The 28-day all-cause mortality was 32.9%. Compared with survivors, non-survivors had significantly lower GCS scores and higher INR, D-dimer, and APTT values. Very high VIF values indicated severe multicollinearity between predictors. Classical logistic regression was not estimable due to perfect separation; therefore, regularized logistic regression and Random Forest were applied. Random Forest demonstrated higher performance (AUC 0.95, accuracy ≈ 90%) than logistic regression (AUC 0.77, accuracy 70.1%), although results must be interpreted cautiously given the small sample size and potential overfitting. Feature importance analysis identified increased BMI, prolonged APTT, and elevated D-dimer as leading predictors of mortality. Sensitivity analysis excluding BMI still yielded strong performance (AUC 0.91), confirming the prognostic value of coagulation markers and GCS.</p><p><strong>Conclusions: </strong>Mortality in adult sTBI patients was strongly associated with impaired hemostasis, obesity, and low neurological status at admission. Machine learning-based modeling demonstrated promising predictive accuracy but is exploratory in nature. Findings should be interpreted with caution due to retrospective design, severe multicollinearity, potential overfitting, and absence of external validation. Larger, prospective, multicenter studies are needed to confirm these results and improve early risk stratification in severe TBI.</p>\",\"PeriodicalId\":9095,\"journal\":{\"name\":\"Brain Sciences\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468983/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/brainsci15091014\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15091014","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Potential Predictors of Mortality in Adults with Severe Traumatic Brain Injury.
Background: Severe traumatic brain injury (sTBI) in adults remains a leading cause of mortality and disability worldwide. Early identification of reliable predictors of outcome is crucial for risk stratification and ICU management. Disturbances of hemostasis and metabolic factors such as body mass index (BMI) have been proposed as potential prognostic markers, but evidence remains limited.
Methods: We conducted a retrospective, multicenter study including 307 adult patients with sTBI (Glasgow Coma Scale ≤ 8) admitted to three tertiary intensive care units in Ukraine between September 2023 and July 2024. All patients underwent surgical evacuation of hematomas and decompressive craniotomy. Laboratory parameters (APTT, INR, fibrinogen, platelets, D-dimer) were collected within 12 h of admission. BMI was calculated from measured height and weight. Predictive modeling was performed using L1-regularized logistic regression and Random Forest algorithms. Class imbalance was addressed with SMOTE. Model performance was assessed by AUC, accuracy, calibration, and feature importance.
Results: The 28-day all-cause mortality was 32.9%. Compared with survivors, non-survivors had significantly lower GCS scores and higher INR, D-dimer, and APTT values. Very high VIF values indicated severe multicollinearity between predictors. Classical logistic regression was not estimable due to perfect separation; therefore, regularized logistic regression and Random Forest were applied. Random Forest demonstrated higher performance (AUC 0.95, accuracy ≈ 90%) than logistic regression (AUC 0.77, accuracy 70.1%), although results must be interpreted cautiously given the small sample size and potential overfitting. Feature importance analysis identified increased BMI, prolonged APTT, and elevated D-dimer as leading predictors of mortality. Sensitivity analysis excluding BMI still yielded strong performance (AUC 0.91), confirming the prognostic value of coagulation markers and GCS.
Conclusions: Mortality in adult sTBI patients was strongly associated with impaired hemostasis, obesity, and low neurological status at admission. Machine learning-based modeling demonstrated promising predictive accuracy but is exploratory in nature. Findings should be interpreted with caution due to retrospective design, severe multicollinearity, potential overfitting, and absence of external validation. Larger, prospective, multicenter studies are needed to confirm these results and improve early risk stratification in severe TBI.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.