眼睛之外:青光眼和大脑。

IF 2.8 3区 医学 Q3 NEUROSCIENCES
Marco Zeppieri, Federico Visalli, Mutali Musa, Alessandro Avitabile, Rosa Giglio, Daniele Tognetto, Caterina Gagliano, Fabiana D'Esposito, Francesco Cappellani
{"title":"眼睛之外:青光眼和大脑。","authors":"Marco Zeppieri, Federico Visalli, Mutali Musa, Alessandro Avitabile, Rosa Giglio, Daniele Tognetto, Caterina Gagliano, Fabiana D'Esposito, Francesco Cappellani","doi":"10.3390/brainsci15090934","DOIUrl":null,"url":null,"abstract":"<p><p>Glaucoma is traditionally classified as an ocular disease characterized by progressive retinal ganglion cell (RGC) loss and optic nerve damage. However, emerging evidence suggests that its pathophysiology may extend beyond the eye, involving trans-synaptic neurodegeneration along the visual pathway and structural changes within central brain regions, including the lateral geniculate nucleus and visual cortex. In this narrative review, we have used the phrase 'brain involvement' to underscore central changes that accompany or follow retinal ganglion cell loss; we have not intended to redefine glaucoma as a primary cerebral disorder. Neuroimaging studies and neurocognitive assessments in adult glaucoma patients, primarily older individuals with primary open-angle glaucoma reveal that glaucoma patients may exhibit alterations in brain connectivity and cortical thinning, aligning it more closely with neurodegenerative disorders such as Alzheimer's and Parkinson's disease. This evolving neurocentric perspective raises important questions regarding shared mechanisms-such as mitochondrial dysfunction, chronic inflammation, and impaired axonal transport-that may link glaucomatous optic neuropathy to central nervous system (CNS) pathology. These insights open promising therapeutic avenues, including the repurposing of neuroprotective and neuroregenerative agents, targeting not only intraocular pressure (IOP) but also broader CNS pathways. Furthermore, neuroimaging biomarkers and brain-targeted interventions may play a future role in diagnosis, prognosis, and individualized treatment. This review synthesizes current evidence supporting glaucoma as a CNS disease, explores the mechanistic overlap with neurodegeneration, and discusses the potential clinical implications of glaucoma within a neuro-ophthalmologic paradigm.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467791/pdf/","citationCount":"0","resultStr":"{\"title\":\"Beyond the Eye: Glaucoma and the Brain.\",\"authors\":\"Marco Zeppieri, Federico Visalli, Mutali Musa, Alessandro Avitabile, Rosa Giglio, Daniele Tognetto, Caterina Gagliano, Fabiana D'Esposito, Francesco Cappellani\",\"doi\":\"10.3390/brainsci15090934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glaucoma is traditionally classified as an ocular disease characterized by progressive retinal ganglion cell (RGC) loss and optic nerve damage. However, emerging evidence suggests that its pathophysiology may extend beyond the eye, involving trans-synaptic neurodegeneration along the visual pathway and structural changes within central brain regions, including the lateral geniculate nucleus and visual cortex. In this narrative review, we have used the phrase 'brain involvement' to underscore central changes that accompany or follow retinal ganglion cell loss; we have not intended to redefine glaucoma as a primary cerebral disorder. Neuroimaging studies and neurocognitive assessments in adult glaucoma patients, primarily older individuals with primary open-angle glaucoma reveal that glaucoma patients may exhibit alterations in brain connectivity and cortical thinning, aligning it more closely with neurodegenerative disorders such as Alzheimer's and Parkinson's disease. This evolving neurocentric perspective raises important questions regarding shared mechanisms-such as mitochondrial dysfunction, chronic inflammation, and impaired axonal transport-that may link glaucomatous optic neuropathy to central nervous system (CNS) pathology. These insights open promising therapeutic avenues, including the repurposing of neuroprotective and neuroregenerative agents, targeting not only intraocular pressure (IOP) but also broader CNS pathways. Furthermore, neuroimaging biomarkers and brain-targeted interventions may play a future role in diagnosis, prognosis, and individualized treatment. This review synthesizes current evidence supporting glaucoma as a CNS disease, explores the mechanistic overlap with neurodegeneration, and discusses the potential clinical implications of glaucoma within a neuro-ophthalmologic paradigm.</p>\",\"PeriodicalId\":9095,\"journal\":{\"name\":\"Brain Sciences\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467791/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/brainsci15090934\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15090934","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

青光眼传统上被归类为一种以进行性视网膜神经节细胞(RGC)丧失和视神经损伤为特征的眼部疾病。然而,新出现的证据表明,其病理生理可能延伸到眼睛之外,涉及沿视觉通路的突触神经变性和中央脑区域(包括外侧膝状核和视觉皮层)的结构变化。在这篇叙述性综述中,我们使用了“大脑受累”一词来强调伴随或跟随视网膜神经节细胞丢失的中枢变化;我们不打算将青光眼重新定义为原发性大脑疾病。成人青光眼患者(主要是老年原发性开角型青光眼患者)的神经影像学研究和神经认知评估显示,青光眼患者可能表现出大脑连通性改变和皮层变薄,这与阿尔茨海默病和帕金森病等神经退行性疾病更接近。这种不断发展的神经中心观点提出了关于共享机制的重要问题,例如线粒体功能障碍,慢性炎症和轴突运输受损,这些机制可能将青光眼视神经病变与中枢神经系统(CNS)病理联系起来。这些发现开辟了有希望的治疗途径,包括神经保护和神经再生药物的再利用,不仅针对眼压(IOP),而且针对更广泛的中枢神经系统通路。此外,神经成像生物标志物和脑靶向干预可能在未来的诊断、预后和个体化治疗中发挥作用。这篇综述综合了支持青光眼作为一种中枢神经系统疾病的现有证据,探讨了与神经退行性变的机制重叠,并讨论了青光眼在神经-眼科学范式中的潜在临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond the Eye: Glaucoma and the Brain.

Glaucoma is traditionally classified as an ocular disease characterized by progressive retinal ganglion cell (RGC) loss and optic nerve damage. However, emerging evidence suggests that its pathophysiology may extend beyond the eye, involving trans-synaptic neurodegeneration along the visual pathway and structural changes within central brain regions, including the lateral geniculate nucleus and visual cortex. In this narrative review, we have used the phrase 'brain involvement' to underscore central changes that accompany or follow retinal ganglion cell loss; we have not intended to redefine glaucoma as a primary cerebral disorder. Neuroimaging studies and neurocognitive assessments in adult glaucoma patients, primarily older individuals with primary open-angle glaucoma reveal that glaucoma patients may exhibit alterations in brain connectivity and cortical thinning, aligning it more closely with neurodegenerative disorders such as Alzheimer's and Parkinson's disease. This evolving neurocentric perspective raises important questions regarding shared mechanisms-such as mitochondrial dysfunction, chronic inflammation, and impaired axonal transport-that may link glaucomatous optic neuropathy to central nervous system (CNS) pathology. These insights open promising therapeutic avenues, including the repurposing of neuroprotective and neuroregenerative agents, targeting not only intraocular pressure (IOP) but also broader CNS pathways. Furthermore, neuroimaging biomarkers and brain-targeted interventions may play a future role in diagnosis, prognosis, and individualized treatment. This review synthesizes current evidence supporting glaucoma as a CNS disease, explores the mechanistic overlap with neurodegeneration, and discusses the potential clinical implications of glaucoma within a neuro-ophthalmologic paradigm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Sciences
Brain Sciences Neuroscience-General Neuroscience
CiteScore
4.80
自引率
9.10%
发文量
1472
审稿时长
18.71 days
期刊介绍: Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信