{"title":"脊髓损伤后无创颈椎刺激和呼吸恢复:一项部分交叉设计的随机对照试验。","authors":"Hatice Kumru, Agustin Hernandez-Navarro, Sergiu Albu, Loreto García-Alén","doi":"10.3390/brainsci15090982","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Respiratory impairment is the leading cause of morbidity and mortality in participants with spinal cord injury (SCI). Cervical SCI (cSCI) severely compromises respiratory function due to paralysis and weakness of the respiratory muscles. Recent evidence suggests that transcutaneous electrical spinal cord stimulation (tSCS) may enhance motor strength and promote functional recovery. Therefore, cervical tSCS, applied at cervical segments, holds potential as a therapeutic strategy to improve respiratory function in participants with cervical SCI. <b>Methods</b>: This randomized controlled trial with a partial crossover design included participants with both complete and incomplete cSCI. Neurological assessments were used, as well as tests to evaluate pulmonary function maximum inspiratory pressure (MIP), maximum expiratory pressure (MEP), and spirometric measurements. These assessments were conducted at baseline and after the last session. The experimental group received tSCS at the C3-C4 and C6-C7 cervical spinal levels, delivered at a frequency of 30 Hz during occupational therapy. The control group underwent identical occupational therapy sessions without stimulation. Each session lasted 30 min and was conducted over eight days. <b>Results</b>: Fifteen participants with cSCI received tSCS, while 11 cSCI participants were included in the control group. Seven participants took part in both groups. Only the tSCS group showed significant improvements in MIP, MEP, and forced vital capacity (<i>p</i> < 0.05), while no significant changes were observed in the control group. <b>Conclusions</b>: tSCS applied at the cervical segments can promote respiratory function following cervical SCI. This approach may support neuroplasticity and help reduce long-term respiratory complications in participants with cervical SCI. However, to confirm these effects, long-term stimulation protocols and follow-up studies in larger SCI populations are required.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469035/pdf/","citationCount":"0","resultStr":"{\"title\":\"Non-Invasive Cervical Spinal Stimulation and Respiratory Recovery After Spinal Cord Injury: A Randomized Controlled Trial with a Partial Crossover Design.\",\"authors\":\"Hatice Kumru, Agustin Hernandez-Navarro, Sergiu Albu, Loreto García-Alén\",\"doi\":\"10.3390/brainsci15090982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives</b>: Respiratory impairment is the leading cause of morbidity and mortality in participants with spinal cord injury (SCI). Cervical SCI (cSCI) severely compromises respiratory function due to paralysis and weakness of the respiratory muscles. Recent evidence suggests that transcutaneous electrical spinal cord stimulation (tSCS) may enhance motor strength and promote functional recovery. Therefore, cervical tSCS, applied at cervical segments, holds potential as a therapeutic strategy to improve respiratory function in participants with cervical SCI. <b>Methods</b>: This randomized controlled trial with a partial crossover design included participants with both complete and incomplete cSCI. Neurological assessments were used, as well as tests to evaluate pulmonary function maximum inspiratory pressure (MIP), maximum expiratory pressure (MEP), and spirometric measurements. These assessments were conducted at baseline and after the last session. The experimental group received tSCS at the C3-C4 and C6-C7 cervical spinal levels, delivered at a frequency of 30 Hz during occupational therapy. The control group underwent identical occupational therapy sessions without stimulation. Each session lasted 30 min and was conducted over eight days. <b>Results</b>: Fifteen participants with cSCI received tSCS, while 11 cSCI participants were included in the control group. Seven participants took part in both groups. Only the tSCS group showed significant improvements in MIP, MEP, and forced vital capacity (<i>p</i> < 0.05), while no significant changes were observed in the control group. <b>Conclusions</b>: tSCS applied at the cervical segments can promote respiratory function following cervical SCI. This approach may support neuroplasticity and help reduce long-term respiratory complications in participants with cervical SCI. However, to confirm these effects, long-term stimulation protocols and follow-up studies in larger SCI populations are required.</p>\",\"PeriodicalId\":9095,\"journal\":{\"name\":\"Brain Sciences\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469035/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/brainsci15090982\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15090982","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Non-Invasive Cervical Spinal Stimulation and Respiratory Recovery After Spinal Cord Injury: A Randomized Controlled Trial with a Partial Crossover Design.
Background/Objectives: Respiratory impairment is the leading cause of morbidity and mortality in participants with spinal cord injury (SCI). Cervical SCI (cSCI) severely compromises respiratory function due to paralysis and weakness of the respiratory muscles. Recent evidence suggests that transcutaneous electrical spinal cord stimulation (tSCS) may enhance motor strength and promote functional recovery. Therefore, cervical tSCS, applied at cervical segments, holds potential as a therapeutic strategy to improve respiratory function in participants with cervical SCI. Methods: This randomized controlled trial with a partial crossover design included participants with both complete and incomplete cSCI. Neurological assessments were used, as well as tests to evaluate pulmonary function maximum inspiratory pressure (MIP), maximum expiratory pressure (MEP), and spirometric measurements. These assessments were conducted at baseline and after the last session. The experimental group received tSCS at the C3-C4 and C6-C7 cervical spinal levels, delivered at a frequency of 30 Hz during occupational therapy. The control group underwent identical occupational therapy sessions without stimulation. Each session lasted 30 min and was conducted over eight days. Results: Fifteen participants with cSCI received tSCS, while 11 cSCI participants were included in the control group. Seven participants took part in both groups. Only the tSCS group showed significant improvements in MIP, MEP, and forced vital capacity (p < 0.05), while no significant changes were observed in the control group. Conclusions: tSCS applied at the cervical segments can promote respiratory function following cervical SCI. This approach may support neuroplasticity and help reduce long-term respiratory complications in participants with cervical SCI. However, to confirm these effects, long-term stimulation protocols and follow-up studies in larger SCI populations are required.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.