{"title":"基于多元变分模态分解的深度学习癫痫信号分类方法。","authors":"Shang Zhang, Guangda Liu, Shiqing Sun, Jing Cai","doi":"10.3390/brainsci15090933","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Epilepsy is a neurological disorder that severely impacts patients' quality of life. In clinical practice, specific pharmacological and surgical interventions are tailored to distinct seizure types. The identification of the epileptogenic zone enables the implementation of surgical procedures and neuromodulation therapies. Consequently, accurate classification of seizure types and precise determination of focal epileptic signals are critical to provide clinicians with essential diagnostic insights for optimizing therapeutic strategies. Traditional machine learning approaches are constrained in their efficacy due to limited capability in autonomously extracting features. <b>Methods</b>: This study proposes a novel deep learning framework integrating temporal and spatial information extraction to address this limitation. Multivariate variational mode decomposition (MVMD) is employed to maintain inter-channel mode alignment during the decomposition of multi-channel epileptic signals, ensuring the synchronization of time-frequency characteristics across channels and effectively mitigating mode mixing and mode mismatch issues. <b>Results</b>: The Bern-Barcelona database is employed to classify focal epileptic signals, with the proposed framework achieving an accuracy of 98.85%, a sensitivity of 98.75%, and a specificity of 98.95%. For multi-class seizure type classification, the TUSZ database is utilized. Subject-dependent experiments yield an accuracy of 96.17% with a weighted F1-score of 0.962. Meanwhile, subject-independent experiments attain an accuracy of 87.97% and a weighted F1-score of 0.884. <b>Conclusions</b>: The proposed framework effectively integrates temporal and spatial domain information derived from multi-channel epileptic signals, thereby significantly enhancing the algorithm's classification performance. The performance on unseen patients demonstrates robust generalization capability, indicating the potential clinical applicability in assisting neurologists with epileptic signal classification.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468264/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Method Based on Multivariate Variational Mode Decomposition for Classification of Epileptic Signals.\",\"authors\":\"Shang Zhang, Guangda Liu, Shiqing Sun, Jing Cai\",\"doi\":\"10.3390/brainsci15090933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives</b>: Epilepsy is a neurological disorder that severely impacts patients' quality of life. In clinical practice, specific pharmacological and surgical interventions are tailored to distinct seizure types. The identification of the epileptogenic zone enables the implementation of surgical procedures and neuromodulation therapies. Consequently, accurate classification of seizure types and precise determination of focal epileptic signals are critical to provide clinicians with essential diagnostic insights for optimizing therapeutic strategies. Traditional machine learning approaches are constrained in their efficacy due to limited capability in autonomously extracting features. <b>Methods</b>: This study proposes a novel deep learning framework integrating temporal and spatial information extraction to address this limitation. Multivariate variational mode decomposition (MVMD) is employed to maintain inter-channel mode alignment during the decomposition of multi-channel epileptic signals, ensuring the synchronization of time-frequency characteristics across channels and effectively mitigating mode mixing and mode mismatch issues. <b>Results</b>: The Bern-Barcelona database is employed to classify focal epileptic signals, with the proposed framework achieving an accuracy of 98.85%, a sensitivity of 98.75%, and a specificity of 98.95%. For multi-class seizure type classification, the TUSZ database is utilized. Subject-dependent experiments yield an accuracy of 96.17% with a weighted F1-score of 0.962. Meanwhile, subject-independent experiments attain an accuracy of 87.97% and a weighted F1-score of 0.884. <b>Conclusions</b>: The proposed framework effectively integrates temporal and spatial domain information derived from multi-channel epileptic signals, thereby significantly enhancing the algorithm's classification performance. The performance on unseen patients demonstrates robust generalization capability, indicating the potential clinical applicability in assisting neurologists with epileptic signal classification.</p>\",\"PeriodicalId\":9095,\"journal\":{\"name\":\"Brain Sciences\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468264/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/brainsci15090933\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15090933","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Deep Learning Method Based on Multivariate Variational Mode Decomposition for Classification of Epileptic Signals.
Background/Objectives: Epilepsy is a neurological disorder that severely impacts patients' quality of life. In clinical practice, specific pharmacological and surgical interventions are tailored to distinct seizure types. The identification of the epileptogenic zone enables the implementation of surgical procedures and neuromodulation therapies. Consequently, accurate classification of seizure types and precise determination of focal epileptic signals are critical to provide clinicians with essential diagnostic insights for optimizing therapeutic strategies. Traditional machine learning approaches are constrained in their efficacy due to limited capability in autonomously extracting features. Methods: This study proposes a novel deep learning framework integrating temporal and spatial information extraction to address this limitation. Multivariate variational mode decomposition (MVMD) is employed to maintain inter-channel mode alignment during the decomposition of multi-channel epileptic signals, ensuring the synchronization of time-frequency characteristics across channels and effectively mitigating mode mixing and mode mismatch issues. Results: The Bern-Barcelona database is employed to classify focal epileptic signals, with the proposed framework achieving an accuracy of 98.85%, a sensitivity of 98.75%, and a specificity of 98.95%. For multi-class seizure type classification, the TUSZ database is utilized. Subject-dependent experiments yield an accuracy of 96.17% with a weighted F1-score of 0.962. Meanwhile, subject-independent experiments attain an accuracy of 87.97% and a weighted F1-score of 0.884. Conclusions: The proposed framework effectively integrates temporal and spatial domain information derived from multi-channel epileptic signals, thereby significantly enhancing the algorithm's classification performance. The performance on unseen patients demonstrates robust generalization capability, indicating the potential clinical applicability in assisting neurologists with epileptic signal classification.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.