{"title":"纳米材料作为抗氧化剂和促氧化剂在卵巢癌和女性生育中的双重作用。","authors":"Massimo Aloisi, Gianna Rossi, Sandra Cecconi","doi":"10.3390/antiox14091066","DOIUrl":null,"url":null,"abstract":"<p><p>Nanomaterials (NMs) are becoming increasingly important in biomedical applications, especially in reproductive biology and oncology. In this review, we examined the \"double face\" of NMs as prooxidants and antioxidants in relation to ovarian cancer and female fertility. NMs have been shown to reduce oxidative stress pathways in tumors, enhancing the effectiveness of chemotherapy and serving as carriers for drugs and compounds. They are also considered for their protective effects on female fertility by improving oocyte quality, maturation, and survival under various healthy and adverse conditions. However, certain NMs can induce oxidative stress, mitochondrial dysfunction, and ovarian tissue apoptosis when present in high concentrations or after prolonged exposure. These \"double face\" effects highlight the complex nature of NMs' concentration, shape, and biocompatibility. Although NMs show promise in cancer treatment and fertility preservation, a comprehensive assessment of their prooxidant potential is necessary for successful clinical application.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466870/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Dual Role of Nanomaterials in Ovarian Cancer and Female Fertility as Anti- and Prooxidants.\",\"authors\":\"Massimo Aloisi, Gianna Rossi, Sandra Cecconi\",\"doi\":\"10.3390/antiox14091066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanomaterials (NMs) are becoming increasingly important in biomedical applications, especially in reproductive biology and oncology. In this review, we examined the \\\"double face\\\" of NMs as prooxidants and antioxidants in relation to ovarian cancer and female fertility. NMs have been shown to reduce oxidative stress pathways in tumors, enhancing the effectiveness of chemotherapy and serving as carriers for drugs and compounds. They are also considered for their protective effects on female fertility by improving oocyte quality, maturation, and survival under various healthy and adverse conditions. However, certain NMs can induce oxidative stress, mitochondrial dysfunction, and ovarian tissue apoptosis when present in high concentrations or after prolonged exposure. These \\\"double face\\\" effects highlight the complex nature of NMs' concentration, shape, and biocompatibility. Although NMs show promise in cancer treatment and fertility preservation, a comprehensive assessment of their prooxidant potential is necessary for successful clinical application.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466870/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14091066\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091066","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Dual Role of Nanomaterials in Ovarian Cancer and Female Fertility as Anti- and Prooxidants.
Nanomaterials (NMs) are becoming increasingly important in biomedical applications, especially in reproductive biology and oncology. In this review, we examined the "double face" of NMs as prooxidants and antioxidants in relation to ovarian cancer and female fertility. NMs have been shown to reduce oxidative stress pathways in tumors, enhancing the effectiveness of chemotherapy and serving as carriers for drugs and compounds. They are also considered for their protective effects on female fertility by improving oocyte quality, maturation, and survival under various healthy and adverse conditions. However, certain NMs can induce oxidative stress, mitochondrial dysfunction, and ovarian tissue apoptosis when present in high concentrations or after prolonged exposure. These "double face" effects highlight the complex nature of NMs' concentration, shape, and biocompatibility. Although NMs show promise in cancer treatment and fertility preservation, a comprehensive assessment of their prooxidant potential is necessary for successful clinical application.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.