{"title":"山竹果皮提取物通过激活NRF2/HO-1、恢复肠道屏障完整性和调节肠道微生物群减轻diquat诱导的肝脏氧化应激。","authors":"Weichen Huang, Yujie Lv, Chenhao Zou, Chaoyue Ge, Shenao Zhan, Xinyu Shen, Lianchi Wu, Xiaoxu Wang, Hongmeng Yuan, Gang Lin, Dongyou Yu, Bing Liu","doi":"10.3390/antiox14091045","DOIUrl":null,"url":null,"abstract":"<p><p>Poultry production exposes birds to diverse environmental and physiological stressors that disrupt redox balance, impair gut-liver axis function, and undermine health and productivity. This study investigated the hepatoprotective and antioxidative effects of mangosteen pericarp extract (MPE) in an experimental model of diquat-induced oxidative stress in laying hens. A total of 270 Hy-Line White laying hens were randomly assigned to three groups: control group (CON), diquat-challenged group (DQ), and MEP intervention with diquat-challenged group (MQ), with six replicates of 15 birds each. The results showed that MPE supplementation effectively mitigated the hepatic oxidative damage caused by diquat, as evidenced by the increased ALT and AST activity, improved lipid metabolism, and reduced hepatic fibrosis. Mechanistically, MPE activated the NRF2/HO-1 antioxidant pathway, thus enhancing the liver's ability to counteract ROS-induced damage and reducing lipid droplet accumulation in liver tissue. MPE supplementation restored intestinal barrier integrity by upregulating tight junction protein expression (Occludin-1 and ZO-1), enhancing MUC-2 expression, and thereby decreasing gut microbiota-derived LPS transferring from the intestine. Additionally, MPE also modulated gut microbiota composition by enriching beneficial bacterial genera such as <i>Lactobacillus</i> and <i>Ruminococcus</i> while suppressing the growth of potentially harmful taxa (e.g., <i>Bacteroidales</i> and <i>UCG-010</i>). Fecal microbiota transplantation (FMT) from MPE-treated donors into diquat-exposed recipients reproduced these beneficial effects, further highlighting the role of gut microbiota modulation in mediating MPE's systemic protective actions. Together, these findings demonstrated that MPE alleviated DQ-induced liver injury and oxidative stress through a combination of antioxidant activity, protection of intestinal barrier function, and modulation of gut microbiota, positioning MPE as a promising natural strategy for mitigating oxidative stress-related liver damage by regulating the gut microbiota and gut-liver axis in poultry.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466791/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mangosteen Pericarp Extract Mitigates Diquat-Induced Hepatic Oxidative Stress by NRF2/HO-1 Activation, Intestinal Barrier Integrity Restoration, and Gut Microbiota Modulation.\",\"authors\":\"Weichen Huang, Yujie Lv, Chenhao Zou, Chaoyue Ge, Shenao Zhan, Xinyu Shen, Lianchi Wu, Xiaoxu Wang, Hongmeng Yuan, Gang Lin, Dongyou Yu, Bing Liu\",\"doi\":\"10.3390/antiox14091045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Poultry production exposes birds to diverse environmental and physiological stressors that disrupt redox balance, impair gut-liver axis function, and undermine health and productivity. This study investigated the hepatoprotective and antioxidative effects of mangosteen pericarp extract (MPE) in an experimental model of diquat-induced oxidative stress in laying hens. A total of 270 Hy-Line White laying hens were randomly assigned to three groups: control group (CON), diquat-challenged group (DQ), and MEP intervention with diquat-challenged group (MQ), with six replicates of 15 birds each. The results showed that MPE supplementation effectively mitigated the hepatic oxidative damage caused by diquat, as evidenced by the increased ALT and AST activity, improved lipid metabolism, and reduced hepatic fibrosis. Mechanistically, MPE activated the NRF2/HO-1 antioxidant pathway, thus enhancing the liver's ability to counteract ROS-induced damage and reducing lipid droplet accumulation in liver tissue. MPE supplementation restored intestinal barrier integrity by upregulating tight junction protein expression (Occludin-1 and ZO-1), enhancing MUC-2 expression, and thereby decreasing gut microbiota-derived LPS transferring from the intestine. Additionally, MPE also modulated gut microbiota composition by enriching beneficial bacterial genera such as <i>Lactobacillus</i> and <i>Ruminococcus</i> while suppressing the growth of potentially harmful taxa (e.g., <i>Bacteroidales</i> and <i>UCG-010</i>). Fecal microbiota transplantation (FMT) from MPE-treated donors into diquat-exposed recipients reproduced these beneficial effects, further highlighting the role of gut microbiota modulation in mediating MPE's systemic protective actions. Together, these findings demonstrated that MPE alleviated DQ-induced liver injury and oxidative stress through a combination of antioxidant activity, protection of intestinal barrier function, and modulation of gut microbiota, positioning MPE as a promising natural strategy for mitigating oxidative stress-related liver damage by regulating the gut microbiota and gut-liver axis in poultry.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466791/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14091045\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091045","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mangosteen Pericarp Extract Mitigates Diquat-Induced Hepatic Oxidative Stress by NRF2/HO-1 Activation, Intestinal Barrier Integrity Restoration, and Gut Microbiota Modulation.
Poultry production exposes birds to diverse environmental and physiological stressors that disrupt redox balance, impair gut-liver axis function, and undermine health and productivity. This study investigated the hepatoprotective and antioxidative effects of mangosteen pericarp extract (MPE) in an experimental model of diquat-induced oxidative stress in laying hens. A total of 270 Hy-Line White laying hens were randomly assigned to three groups: control group (CON), diquat-challenged group (DQ), and MEP intervention with diquat-challenged group (MQ), with six replicates of 15 birds each. The results showed that MPE supplementation effectively mitigated the hepatic oxidative damage caused by diquat, as evidenced by the increased ALT and AST activity, improved lipid metabolism, and reduced hepatic fibrosis. Mechanistically, MPE activated the NRF2/HO-1 antioxidant pathway, thus enhancing the liver's ability to counteract ROS-induced damage and reducing lipid droplet accumulation in liver tissue. MPE supplementation restored intestinal barrier integrity by upregulating tight junction protein expression (Occludin-1 and ZO-1), enhancing MUC-2 expression, and thereby decreasing gut microbiota-derived LPS transferring from the intestine. Additionally, MPE also modulated gut microbiota composition by enriching beneficial bacterial genera such as Lactobacillus and Ruminococcus while suppressing the growth of potentially harmful taxa (e.g., Bacteroidales and UCG-010). Fecal microbiota transplantation (FMT) from MPE-treated donors into diquat-exposed recipients reproduced these beneficial effects, further highlighting the role of gut microbiota modulation in mediating MPE's systemic protective actions. Together, these findings demonstrated that MPE alleviated DQ-induced liver injury and oxidative stress through a combination of antioxidant activity, protection of intestinal barrier function, and modulation of gut microbiota, positioning MPE as a promising natural strategy for mitigating oxidative stress-related liver damage by regulating the gut microbiota and gut-liver axis in poultry.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.