γ-谷维素的生化、生物学和临床特性。

IF 6.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Helena Juricic, Massimiliano Cuccioloni, Laura Bonfili, Mauro Angeletti, Daniela Uberti, Anna Maria Eleuteri, Giulia Abate, Valentina Cecarini
{"title":"γ-谷维素的生化、生物学和临床特性。","authors":"Helena Juricic, Massimiliano Cuccioloni, Laura Bonfili, Mauro Angeletti, Daniela Uberti, Anna Maria Eleuteri, Giulia Abate, Valentina Cecarini","doi":"10.3390/antiox14091099","DOIUrl":null,"url":null,"abstract":"<p><p>γ-Oryzanol is a complex mixture of ferulic acid esters of phytosterols and triterpene alcohols predominantly found in rice bran. It exhibits a wide range of biological activities, including antioxidant, anti-inflammatory, and lipid-lowering effects, as well as the ability to modulate cellular metabolic pathways in both in vitro and in vivo models. The composition and concentration of γ-oryzanol vary significantly among rice varieties and are influenced by genetic, environmental, and technological factors. Advances in extraction methods, including traditional solvent extraction and innovative approaches such as supercritical fluid extraction, have improved yield and purity, supporting its use in functional foods, nutraceuticals, and cosmetics. Current research in the biological, biomedical, and cosmetic fields is actively investigating γ-oryzanol's mechanisms of action in metabolic regulation and inflammation, as well as developing advanced formulation strategies to enhance its antioxidant, skin-protective, and functional properties. These efforts aim to optimize its delivery and efficacy by addressing challenges related to poor water solubility and bioavailability, thereby expanding its role as a multifunctional bioactive compound. This review provides a comprehensive overview on γ-oryzanol, focusing on its extraction techniques, chemical characterization, and biological/pharmacological activities. Additionally, clinical trials investigating its efficacy and safety have been thoroughly dissected, offering valuable insights into its therapeutic potential in human populations.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466495/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biochemical, Biological, and Clinical Properties of γ-Oryzanol.\",\"authors\":\"Helena Juricic, Massimiliano Cuccioloni, Laura Bonfili, Mauro Angeletti, Daniela Uberti, Anna Maria Eleuteri, Giulia Abate, Valentina Cecarini\",\"doi\":\"10.3390/antiox14091099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>γ-Oryzanol is a complex mixture of ferulic acid esters of phytosterols and triterpene alcohols predominantly found in rice bran. It exhibits a wide range of biological activities, including antioxidant, anti-inflammatory, and lipid-lowering effects, as well as the ability to modulate cellular metabolic pathways in both in vitro and in vivo models. The composition and concentration of γ-oryzanol vary significantly among rice varieties and are influenced by genetic, environmental, and technological factors. Advances in extraction methods, including traditional solvent extraction and innovative approaches such as supercritical fluid extraction, have improved yield and purity, supporting its use in functional foods, nutraceuticals, and cosmetics. Current research in the biological, biomedical, and cosmetic fields is actively investigating γ-oryzanol's mechanisms of action in metabolic regulation and inflammation, as well as developing advanced formulation strategies to enhance its antioxidant, skin-protective, and functional properties. These efforts aim to optimize its delivery and efficacy by addressing challenges related to poor water solubility and bioavailability, thereby expanding its role as a multifunctional bioactive compound. This review provides a comprehensive overview on γ-oryzanol, focusing on its extraction techniques, chemical characterization, and biological/pharmacological activities. Additionally, clinical trials investigating its efficacy and safety have been thoroughly dissected, offering valuable insights into its therapeutic potential in human populations.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466495/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14091099\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091099","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

γ-稻谷醇是一种复杂的混合物阿魏酸酯的植物甾醇和三萜醇主要存在于米糠。它具有广泛的生物活性,包括抗氧化、抗炎和降脂作用,以及在体外和体内模型中调节细胞代谢途径的能力。γ-谷维素的组成和浓度在不同水稻品种间存在显著差异,并受遗传、环境和技术因素的影响。提取方法的进步,包括传统的溶剂提取和创新的方法,如超临界流体提取,提高了产量和纯度,支持其在功能食品、营养保健品和化妆品中的应用。目前,生物、生物医学和化妆品领域的研究正在积极研究γ-谷米醇在代谢调节和炎症中的作用机制,并开发先进的配方策略来增强其抗氧化、皮肤保护和功能特性。这些努力旨在通过解决与水溶性和生物利用度差相关的挑战来优化其递送和功效,从而扩大其作为多功能生物活性化合物的作用。本文对γ-谷维素的提取技术、化学性质、生物药理活性等方面进行了综述。此外,研究其有效性和安全性的临床试验已被彻底剖析,为其在人类群体中的治疗潜力提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biochemical, Biological, and Clinical Properties of γ-Oryzanol.

Biochemical, Biological, and Clinical Properties of γ-Oryzanol.

Biochemical, Biological, and Clinical Properties of γ-Oryzanol.

Biochemical, Biological, and Clinical Properties of γ-Oryzanol.

γ-Oryzanol is a complex mixture of ferulic acid esters of phytosterols and triterpene alcohols predominantly found in rice bran. It exhibits a wide range of biological activities, including antioxidant, anti-inflammatory, and lipid-lowering effects, as well as the ability to modulate cellular metabolic pathways in both in vitro and in vivo models. The composition and concentration of γ-oryzanol vary significantly among rice varieties and are influenced by genetic, environmental, and technological factors. Advances in extraction methods, including traditional solvent extraction and innovative approaches such as supercritical fluid extraction, have improved yield and purity, supporting its use in functional foods, nutraceuticals, and cosmetics. Current research in the biological, biomedical, and cosmetic fields is actively investigating γ-oryzanol's mechanisms of action in metabolic regulation and inflammation, as well as developing advanced formulation strategies to enhance its antioxidant, skin-protective, and functional properties. These efforts aim to optimize its delivery and efficacy by addressing challenges related to poor water solubility and bioavailability, thereby expanding its role as a multifunctional bioactive compound. This review provides a comprehensive overview on γ-oryzanol, focusing on its extraction techniques, chemical characterization, and biological/pharmacological activities. Additionally, clinical trials investigating its efficacy and safety have been thoroughly dissected, offering valuable insights into its therapeutic potential in human populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信