{"title":"综合转录组学和代谢组学分析揭示发酵韭菜对仔猪早期睾丸发育的调节作用","authors":"Yupeng Xie, Suthar Teerath Kumar, Hong Zou, Ting-Ting Luo, Yunpeng Zhang, Qi Zhang, Yang Li, Kai-Min Niu, Zhenya Zhai, Chunfeng Wang, Wu-Sheng Sun, Shu-Min Zhang","doi":"10.3390/antiox14091056","DOIUrl":null,"url":null,"abstract":"<p><p>Early testicular development is vital for adult male fertility but remains highly vulnerable to stress during the suckling stage. Fermented Chinese chive (<i>Allium tuberosum</i>) is known for its antioxidant and immunomodulatory properties, yet its role in testicular development remains unclear. In this study, Songliao Black piglets received 3‱ fermented Chinese chive (LK group) mixed with starter feed and compared to a control (OD group). Testicular samples at weaning (28 days) underwent transcriptomic and metabolomic analyses. Although no significant differences were observed in gross testicular morphology, the LK group significantly increased individual (13.85%) and litter (15.11%) weaning weights (<i>p</i> < 0.05), with elevated serum triglycerides, total cholesterol, and a 32.2% rise in IgG levels (<i>p</i> < 0.05). Integrated analysis identified 76 shared pathways, including ferroptosis, insulin resistance, PI3K-Akt, MAPK, and cAMP signaling. Upregulated genes in the LK group were mainly related to energy metabolism, antioxidant defense, immune regulation, steroidogenesis, and neuroendocrine signaling, suggesting improved metabolic activity, reduced oxidative stress, and accelerated reproductive maturation. Molecular docking indicated that kaempferol and isorhamnetin from Chinese chive bind strongly to proteins involved in testicular development. Overall, fermented Chinese chive supplementation enhances early testicular development in suckling piglets via integrated modulation of metabolic, immune, and signaling pathways, providing a nutritional strategy to optimize reproductive potential in breeding boars.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466648/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated Transcriptomic and Metabolomic Analysis Reveals Regulatory Effects of Fermented Chinese Chive on Early Testicular Development in Piglets.\",\"authors\":\"Yupeng Xie, Suthar Teerath Kumar, Hong Zou, Ting-Ting Luo, Yunpeng Zhang, Qi Zhang, Yang Li, Kai-Min Niu, Zhenya Zhai, Chunfeng Wang, Wu-Sheng Sun, Shu-Min Zhang\",\"doi\":\"10.3390/antiox14091056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early testicular development is vital for adult male fertility but remains highly vulnerable to stress during the suckling stage. Fermented Chinese chive (<i>Allium tuberosum</i>) is known for its antioxidant and immunomodulatory properties, yet its role in testicular development remains unclear. In this study, Songliao Black piglets received 3‱ fermented Chinese chive (LK group) mixed with starter feed and compared to a control (OD group). Testicular samples at weaning (28 days) underwent transcriptomic and metabolomic analyses. Although no significant differences were observed in gross testicular morphology, the LK group significantly increased individual (13.85%) and litter (15.11%) weaning weights (<i>p</i> < 0.05), with elevated serum triglycerides, total cholesterol, and a 32.2% rise in IgG levels (<i>p</i> < 0.05). Integrated analysis identified 76 shared pathways, including ferroptosis, insulin resistance, PI3K-Akt, MAPK, and cAMP signaling. Upregulated genes in the LK group were mainly related to energy metabolism, antioxidant defense, immune regulation, steroidogenesis, and neuroendocrine signaling, suggesting improved metabolic activity, reduced oxidative stress, and accelerated reproductive maturation. Molecular docking indicated that kaempferol and isorhamnetin from Chinese chive bind strongly to proteins involved in testicular development. Overall, fermented Chinese chive supplementation enhances early testicular development in suckling piglets via integrated modulation of metabolic, immune, and signaling pathways, providing a nutritional strategy to optimize reproductive potential in breeding boars.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466648/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14091056\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091056","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Integrated Transcriptomic and Metabolomic Analysis Reveals Regulatory Effects of Fermented Chinese Chive on Early Testicular Development in Piglets.
Early testicular development is vital for adult male fertility but remains highly vulnerable to stress during the suckling stage. Fermented Chinese chive (Allium tuberosum) is known for its antioxidant and immunomodulatory properties, yet its role in testicular development remains unclear. In this study, Songliao Black piglets received 3‱ fermented Chinese chive (LK group) mixed with starter feed and compared to a control (OD group). Testicular samples at weaning (28 days) underwent transcriptomic and metabolomic analyses. Although no significant differences were observed in gross testicular morphology, the LK group significantly increased individual (13.85%) and litter (15.11%) weaning weights (p < 0.05), with elevated serum triglycerides, total cholesterol, and a 32.2% rise in IgG levels (p < 0.05). Integrated analysis identified 76 shared pathways, including ferroptosis, insulin resistance, PI3K-Akt, MAPK, and cAMP signaling. Upregulated genes in the LK group were mainly related to energy metabolism, antioxidant defense, immune regulation, steroidogenesis, and neuroendocrine signaling, suggesting improved metabolic activity, reduced oxidative stress, and accelerated reproductive maturation. Molecular docking indicated that kaempferol and isorhamnetin from Chinese chive bind strongly to proteins involved in testicular development. Overall, fermented Chinese chive supplementation enhances early testicular development in suckling piglets via integrated modulation of metabolic, immune, and signaling pathways, providing a nutritional strategy to optimize reproductive potential in breeding boars.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.