心血管疾病的线粒体DNA功能障碍:一个新的治疗靶点。

IF 6.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mi Xiang, Mengling Yang, Lijuan Zhang, Xiaohu Ouyang, Alexey Sarapultsev, Shanshan Luo, Desheng Hu
{"title":"心血管疾病的线粒体DNA功能障碍:一个新的治疗靶点。","authors":"Mi Xiang, Mengling Yang, Lijuan Zhang, Xiaohu Ouyang, Alexey Sarapultsev, Shanshan Luo, Desheng Hu","doi":"10.3390/antiox14091138","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases hinge on a vicious, self-amplifying cycle in which mitochondrial deoxyribonucleic acid (mtDNA) dysfunction undermines cardiac bioenergetics and unleashes sterile inflammation. The heart's reliance on oxidative phosphorylation (OXPHOS) makes it exquisitely sensitive to mtDNA insults-mutations, oxidative lesions, copy-number shifts, or aberrant methylation-that impair ATP production, elevate reactive oxygen species (ROS), and further damage the mitochondrial genome. Damaged mtDNA fragments then escape into the cytosol, where they aberrantly engage cGAS-STING, TLR9, and NLRP3 pathways, driving cytokine storms, pyroptosis, and tissue injury. We propose that this cycle represents an almost unifying pathogenic mechanism in a spectrum of mtDNA-driven cardiovascular disorders. In this review, we aim to synthesize the pathophysiological roles of mtDNA in this cycle and its implications for cardiovascular diseases. Furthermore, we seek to evaluate preclinical and clinical strategies aimed at interrupting this cycle-bolstering mtDNA repair and copy-number maintenance, reversing pathogenic methylation, and blocking mtDNA-triggered innate immune activation-and discuss critical gaps that must be bridged to translate these approaches into precision mitochondrial genome medicine for cardiovascular disease.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466557/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial DNA Dysfunction in Cardiovascular Diseases: A Novel Therapeutic Target.\",\"authors\":\"Mi Xiang, Mengling Yang, Lijuan Zhang, Xiaohu Ouyang, Alexey Sarapultsev, Shanshan Luo, Desheng Hu\",\"doi\":\"10.3390/antiox14091138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular diseases hinge on a vicious, self-amplifying cycle in which mitochondrial deoxyribonucleic acid (mtDNA) dysfunction undermines cardiac bioenergetics and unleashes sterile inflammation. The heart's reliance on oxidative phosphorylation (OXPHOS) makes it exquisitely sensitive to mtDNA insults-mutations, oxidative lesions, copy-number shifts, or aberrant methylation-that impair ATP production, elevate reactive oxygen species (ROS), and further damage the mitochondrial genome. Damaged mtDNA fragments then escape into the cytosol, where they aberrantly engage cGAS-STING, TLR9, and NLRP3 pathways, driving cytokine storms, pyroptosis, and tissue injury. We propose that this cycle represents an almost unifying pathogenic mechanism in a spectrum of mtDNA-driven cardiovascular disorders. In this review, we aim to synthesize the pathophysiological roles of mtDNA in this cycle and its implications for cardiovascular diseases. Furthermore, we seek to evaluate preclinical and clinical strategies aimed at interrupting this cycle-bolstering mtDNA repair and copy-number maintenance, reversing pathogenic methylation, and blocking mtDNA-triggered innate immune activation-and discuss critical gaps that must be bridged to translate these approaches into precision mitochondrial genome medicine for cardiovascular disease.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466557/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14091138\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091138","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病依赖于一个恶性的、自我放大的循环,在这个循环中,线粒体脱氧核糖核酸(mtDNA)功能障碍破坏了心脏的生物能量,并引发了无菌炎症。心脏对氧化磷酸化(OXPHOS)的依赖使其对mtDNA的突变、氧化损伤、拷贝数移位或异常甲基化非常敏感,这些都会损害ATP的产生,提高活性氧(ROS),并进一步损害线粒体基因组。受损的mtDNA片段随后逃逸到细胞质中,在那里它们异常地参与cGAS-STING、TLR9和NLRP3通路,驱动细胞因子风暴、焦亡和组织损伤。我们认为这个循环代表了mtdna驱动的心血管疾病谱系中几乎统一的致病机制。在这篇综述中,我们旨在综合mtDNA在这一循环中的病理生理作用及其对心血管疾病的影响。此外,我们寻求评估旨在中断这一循环的临床前和临床策略-支持mtDNA修复和拷贝数维持,逆转致病性甲基化和阻断mtDNA触发的先天免疫激活-并讨论必须弥合的关键差距,将这些方法转化为心血管疾病的精确线粒体基因组药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mitochondrial DNA Dysfunction in Cardiovascular Diseases: A Novel Therapeutic Target.

Mitochondrial DNA Dysfunction in Cardiovascular Diseases: A Novel Therapeutic Target.

Mitochondrial DNA Dysfunction in Cardiovascular Diseases: A Novel Therapeutic Target.

Mitochondrial DNA Dysfunction in Cardiovascular Diseases: A Novel Therapeutic Target.

Cardiovascular diseases hinge on a vicious, self-amplifying cycle in which mitochondrial deoxyribonucleic acid (mtDNA) dysfunction undermines cardiac bioenergetics and unleashes sterile inflammation. The heart's reliance on oxidative phosphorylation (OXPHOS) makes it exquisitely sensitive to mtDNA insults-mutations, oxidative lesions, copy-number shifts, or aberrant methylation-that impair ATP production, elevate reactive oxygen species (ROS), and further damage the mitochondrial genome. Damaged mtDNA fragments then escape into the cytosol, where they aberrantly engage cGAS-STING, TLR9, and NLRP3 pathways, driving cytokine storms, pyroptosis, and tissue injury. We propose that this cycle represents an almost unifying pathogenic mechanism in a spectrum of mtDNA-driven cardiovascular disorders. In this review, we aim to synthesize the pathophysiological roles of mtDNA in this cycle and its implications for cardiovascular diseases. Furthermore, we seek to evaluate preclinical and clinical strategies aimed at interrupting this cycle-bolstering mtDNA repair and copy-number maintenance, reversing pathogenic methylation, and blocking mtDNA-triggered innate immune activation-and discuss critical gaps that must be bridged to translate these approaches into precision mitochondrial genome medicine for cardiovascular disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信