{"title":"人类前列腺上皮内瘤变和前列腺癌中氧化应激水平升高:来自4-羟基检测的证据及其意义","authors":"Geou-Yarh Liou, Woojung Kim, Tamiya M Hobbs","doi":"10.3390/antiox14091060","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer is not only the most common type of cancer in elderly American men but also the 2nd leading cause of cancer death in American men. The currently available treatments in clinics target male hormones that are majorly required for maintaining many physiological functions, including muscle strength, leading to poor life quality and subsequent patient-opted intermittent treatment. Aging is a key factor in prostate cancer that is associated with increased levels of oxidative stress. Several lines of evidence indicated elevated levels of reactive oxygen species (ROS) in prostate cancer, including its precursor, prostate intraepithelial neoplasia (PIN). In this current study, we utilized 4-hydroxynonenal (4HNE) as a general readout for overall oxidative stress to demonstrate the imbalance between ROS and antioxidants in human prostate cancer and its precursor lesion in both human culture cell lines and tissue samples. Our results showed that the production of 4HNE adducts was increased in human prostate cancer cells and was non-linearly correlated with prostate cancer stage. They also provided insight into prevention and potential therapeutic strategies for prostate cancer.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466649/pdf/","citationCount":"0","resultStr":"{\"title\":\"Increased Levels of Oxidative Stress in Human Prostate Intraepithelial Neoplasia and Prostate Cancer: Evidence from 4-Hydroxyneonal Detection and Its Implications.\",\"authors\":\"Geou-Yarh Liou, Woojung Kim, Tamiya M Hobbs\",\"doi\":\"10.3390/antiox14091060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer is not only the most common type of cancer in elderly American men but also the 2nd leading cause of cancer death in American men. The currently available treatments in clinics target male hormones that are majorly required for maintaining many physiological functions, including muscle strength, leading to poor life quality and subsequent patient-opted intermittent treatment. Aging is a key factor in prostate cancer that is associated with increased levels of oxidative stress. Several lines of evidence indicated elevated levels of reactive oxygen species (ROS) in prostate cancer, including its precursor, prostate intraepithelial neoplasia (PIN). In this current study, we utilized 4-hydroxynonenal (4HNE) as a general readout for overall oxidative stress to demonstrate the imbalance between ROS and antioxidants in human prostate cancer and its precursor lesion in both human culture cell lines and tissue samples. Our results showed that the production of 4HNE adducts was increased in human prostate cancer cells and was non-linearly correlated with prostate cancer stage. They also provided insight into prevention and potential therapeutic strategies for prostate cancer.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466649/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14091060\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091060","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Increased Levels of Oxidative Stress in Human Prostate Intraepithelial Neoplasia and Prostate Cancer: Evidence from 4-Hydroxyneonal Detection and Its Implications.
Prostate cancer is not only the most common type of cancer in elderly American men but also the 2nd leading cause of cancer death in American men. The currently available treatments in clinics target male hormones that are majorly required for maintaining many physiological functions, including muscle strength, leading to poor life quality and subsequent patient-opted intermittent treatment. Aging is a key factor in prostate cancer that is associated with increased levels of oxidative stress. Several lines of evidence indicated elevated levels of reactive oxygen species (ROS) in prostate cancer, including its precursor, prostate intraepithelial neoplasia (PIN). In this current study, we utilized 4-hydroxynonenal (4HNE) as a general readout for overall oxidative stress to demonstrate the imbalance between ROS and antioxidants in human prostate cancer and its precursor lesion in both human culture cell lines and tissue samples. Our results showed that the production of 4HNE adducts was increased in human prostate cancer cells and was non-linearly correlated with prostate cancer stage. They also provided insight into prevention and potential therapeutic strategies for prostate cancer.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.