{"title":"玉米过氧化物酶ZmPrx25在渗透和干旱胁迫下调控外胞体ROS稳态并促进种子萌发和生长","authors":"Feixue Zhang, Liangjie Niu, Yingxue Li, Xiaoli Zhou, Hui Zhang, Xiaolin Wu, Hui Liu, Wei Wang","doi":"10.3390/antiox14091067","DOIUrl":null,"url":null,"abstract":"<p><p>Drought is one of the major abiotic stresses threatening maize production globally. Under drought stress, maize plants produce excessive reactive oxygen species (ROS), leading to oxidative damage. The apoplast, as the site of substance and signal exchange between plant cells and the external environment, is an important location for the production of ROS under drought stress. Elucidating the ROS scavenging mechanisms in the apoplast is crucial for understanding plant stress responses. However, there is still a lack of research on the ROS scavenging enzymes in maize apoplast and their mediated signaling pathways. We verified that maize peroxidase Prx25 (ZmPrx25) is localized in the apoplast, it scan scavenge hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and we systematically investigated the responses of the apoplastic <i>ZmPrx25</i>-ROS system to osmotic stress. ROS accumulate in the apoplast of maize mesocotyl in response to osmotic stress and transmit the external osmotic stress signals from the apoplast to the inner cellular compartments. The expression of <i>ZmPrx25</i> is highly upregulated in the meristematic regions of maize seedlings under osmotic and oxidative stress. Overexpression of <i>ZmPrx25</i> in <i>Arabidopsis</i> promoted seed germination and plant growth, significantly enhancing tolerance to osmotic and oxidative stress. This study provides a new perspective on the role of <i>Prx25</i> in scavenging ROS under drought stress.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466370/pdf/","citationCount":"0","resultStr":"{\"title\":\"Maize Peroxidase ZmPrx25 Modulates Apoplastic ROS Homeostasis and Promotes Seed Germination and Growth Under Osmotic and Drought Stresses.\",\"authors\":\"Feixue Zhang, Liangjie Niu, Yingxue Li, Xiaoli Zhou, Hui Zhang, Xiaolin Wu, Hui Liu, Wei Wang\",\"doi\":\"10.3390/antiox14091067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drought is one of the major abiotic stresses threatening maize production globally. Under drought stress, maize plants produce excessive reactive oxygen species (ROS), leading to oxidative damage. The apoplast, as the site of substance and signal exchange between plant cells and the external environment, is an important location for the production of ROS under drought stress. Elucidating the ROS scavenging mechanisms in the apoplast is crucial for understanding plant stress responses. However, there is still a lack of research on the ROS scavenging enzymes in maize apoplast and their mediated signaling pathways. We verified that maize peroxidase Prx25 (ZmPrx25) is localized in the apoplast, it scan scavenge hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and we systematically investigated the responses of the apoplastic <i>ZmPrx25</i>-ROS system to osmotic stress. ROS accumulate in the apoplast of maize mesocotyl in response to osmotic stress and transmit the external osmotic stress signals from the apoplast to the inner cellular compartments. The expression of <i>ZmPrx25</i> is highly upregulated in the meristematic regions of maize seedlings under osmotic and oxidative stress. Overexpression of <i>ZmPrx25</i> in <i>Arabidopsis</i> promoted seed germination and plant growth, significantly enhancing tolerance to osmotic and oxidative stress. This study provides a new perspective on the role of <i>Prx25</i> in scavenging ROS under drought stress.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466370/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14091067\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091067","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Maize Peroxidase ZmPrx25 Modulates Apoplastic ROS Homeostasis and Promotes Seed Germination and Growth Under Osmotic and Drought Stresses.
Drought is one of the major abiotic stresses threatening maize production globally. Under drought stress, maize plants produce excessive reactive oxygen species (ROS), leading to oxidative damage. The apoplast, as the site of substance and signal exchange between plant cells and the external environment, is an important location for the production of ROS under drought stress. Elucidating the ROS scavenging mechanisms in the apoplast is crucial for understanding plant stress responses. However, there is still a lack of research on the ROS scavenging enzymes in maize apoplast and their mediated signaling pathways. We verified that maize peroxidase Prx25 (ZmPrx25) is localized in the apoplast, it scan scavenge hydrogen peroxide (H2O2), and we systematically investigated the responses of the apoplastic ZmPrx25-ROS system to osmotic stress. ROS accumulate in the apoplast of maize mesocotyl in response to osmotic stress and transmit the external osmotic stress signals from the apoplast to the inner cellular compartments. The expression of ZmPrx25 is highly upregulated in the meristematic regions of maize seedlings under osmotic and oxidative stress. Overexpression of ZmPrx25 in Arabidopsis promoted seed germination and plant growth, significantly enhancing tolerance to osmotic and oxidative stress. This study provides a new perspective on the role of Prx25 in scavenging ROS under drought stress.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.