Francisca Villarroel, Eder Ramírez, Nikol Ponce, Francisco Nualart, Paulo Salinas
{"title":"木材烟雾排放PM2.5对大鼠胎盘中葡萄糖转运蛋白1 (GLUT1)和钠依赖性维生素C转运蛋白2 (SVCT2)表达的影响:孕前和妊娠暴露研究","authors":"Francisca Villarroel, Eder Ramírez, Nikol Ponce, Francisco Nualart, Paulo Salinas","doi":"10.3390/antiox14091050","DOIUrl":null,"url":null,"abstract":"<p><p>Fine particulate matter (PM2.5) emitted by wood smoke is a significant environmental pollutant associated with oxidative stress and hypoxia. These conditions can disrupt placental function by altering the expression of key nutrient transporters, such as glucose transporter 1 (GLUT1) and sodium-dependent vitamin C transporter 2 (SVCT2), which are essential for fetal development. This study evaluates the effects of pregestational and gestational exposure to PM2.5 on GLUT1 and SVCT2 expression in the rat placenta. Pregnant Sprague-Dawley rats were exposed to either filtered air (FA) or non-filtered air (NFA) containing PM2.5 from wood combustion in a controlled exposure system. Four experimental groups were established: FA/FA (control), FA/NFA (gestational exposure), NFA/FA (pregestational exposure), and NFA/NFA (continuous exposure). Immunofluorescence and confocal microscopy were used to quantify the expression of GLUT1 and SVCT2 in the placental labyrinth zone. Statistical analyses were performed using Kruskal-Wallis and post hoc Dunn's test (<i>p</i> < 0.05). Gestational exposure to PM2.5 (FA/NFA) significantly reduced GLUT1 and SVCT2 expression, compromising glucose transport and antioxidant protection in the placenta. Pregestational exposure (NFA/FA) induced a compensatory increase in SVCT2 expression, suggesting an adaptive response to oxidative stress. Continuous exposure (NFA/NFA) resulted in GLUT1 redistribution within the syncytiotrophoblast and decreased membrane localization, potentially impairing glucose uptake. PM2.5 exposure disrupts the expression and localization of GLUT1 and SVCT2 in the placenta, with differential effects depending on the timing of exposure. The gestational phase appears to be particularly vulnerable, as reduced GLUT1 and SVCT2 levels may impair fetal nutrition and antioxidant defense. These findings underscore the need for preventive measures to mitigate air pollution-related risks during pregnancy.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466713/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of PM2.5 Emitted by Wood Smoke on the Expression of Glucose Transporter 1 (GLUT1) and Sodium-Dependent Vitamin C Transporter 2 (SVCT2) in the Rat Placenta: A Pregestational and Gestational Exposure Study.\",\"authors\":\"Francisca Villarroel, Eder Ramírez, Nikol Ponce, Francisco Nualart, Paulo Salinas\",\"doi\":\"10.3390/antiox14091050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fine particulate matter (PM2.5) emitted by wood smoke is a significant environmental pollutant associated with oxidative stress and hypoxia. These conditions can disrupt placental function by altering the expression of key nutrient transporters, such as glucose transporter 1 (GLUT1) and sodium-dependent vitamin C transporter 2 (SVCT2), which are essential for fetal development. This study evaluates the effects of pregestational and gestational exposure to PM2.5 on GLUT1 and SVCT2 expression in the rat placenta. Pregnant Sprague-Dawley rats were exposed to either filtered air (FA) or non-filtered air (NFA) containing PM2.5 from wood combustion in a controlled exposure system. Four experimental groups were established: FA/FA (control), FA/NFA (gestational exposure), NFA/FA (pregestational exposure), and NFA/NFA (continuous exposure). Immunofluorescence and confocal microscopy were used to quantify the expression of GLUT1 and SVCT2 in the placental labyrinth zone. Statistical analyses were performed using Kruskal-Wallis and post hoc Dunn's test (<i>p</i> < 0.05). Gestational exposure to PM2.5 (FA/NFA) significantly reduced GLUT1 and SVCT2 expression, compromising glucose transport and antioxidant protection in the placenta. Pregestational exposure (NFA/FA) induced a compensatory increase in SVCT2 expression, suggesting an adaptive response to oxidative stress. Continuous exposure (NFA/NFA) resulted in GLUT1 redistribution within the syncytiotrophoblast and decreased membrane localization, potentially impairing glucose uptake. PM2.5 exposure disrupts the expression and localization of GLUT1 and SVCT2 in the placenta, with differential effects depending on the timing of exposure. The gestational phase appears to be particularly vulnerable, as reduced GLUT1 and SVCT2 levels may impair fetal nutrition and antioxidant defense. These findings underscore the need for preventive measures to mitigate air pollution-related risks during pregnancy.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466713/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14091050\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091050","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Impact of PM2.5 Emitted by Wood Smoke on the Expression of Glucose Transporter 1 (GLUT1) and Sodium-Dependent Vitamin C Transporter 2 (SVCT2) in the Rat Placenta: A Pregestational and Gestational Exposure Study.
Fine particulate matter (PM2.5) emitted by wood smoke is a significant environmental pollutant associated with oxidative stress and hypoxia. These conditions can disrupt placental function by altering the expression of key nutrient transporters, such as glucose transporter 1 (GLUT1) and sodium-dependent vitamin C transporter 2 (SVCT2), which are essential for fetal development. This study evaluates the effects of pregestational and gestational exposure to PM2.5 on GLUT1 and SVCT2 expression in the rat placenta. Pregnant Sprague-Dawley rats were exposed to either filtered air (FA) or non-filtered air (NFA) containing PM2.5 from wood combustion in a controlled exposure system. Four experimental groups were established: FA/FA (control), FA/NFA (gestational exposure), NFA/FA (pregestational exposure), and NFA/NFA (continuous exposure). Immunofluorescence and confocal microscopy were used to quantify the expression of GLUT1 and SVCT2 in the placental labyrinth zone. Statistical analyses were performed using Kruskal-Wallis and post hoc Dunn's test (p < 0.05). Gestational exposure to PM2.5 (FA/NFA) significantly reduced GLUT1 and SVCT2 expression, compromising glucose transport and antioxidant protection in the placenta. Pregestational exposure (NFA/FA) induced a compensatory increase in SVCT2 expression, suggesting an adaptive response to oxidative stress. Continuous exposure (NFA/NFA) resulted in GLUT1 redistribution within the syncytiotrophoblast and decreased membrane localization, potentially impairing glucose uptake. PM2.5 exposure disrupts the expression and localization of GLUT1 and SVCT2 in the placenta, with differential effects depending on the timing of exposure. The gestational phase appears to be particularly vulnerable, as reduced GLUT1 and SVCT2 levels may impair fetal nutrition and antioxidant defense. These findings underscore the need for preventive measures to mitigate air pollution-related risks during pregnancy.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.