综合脂质组学和网络药理学揭示ampk介导的3,3'-二吲哚基甲烷在肝脏脂质代谢中的治疗机制。

IF 6.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xudong Li, Yunfeng Lin, Ruomei Niu, Siyuan Chen, Jingyun Pan, Yuquan Zhong, Junqiang Du, Qiuxia Dong, Hongfeng Zhang, Heng Fang, Huiyang Zhu, Wei Zhu
{"title":"综合脂质组学和网络药理学揭示ampk介导的3,3'-二吲哚基甲烷在肝脏脂质代谢中的治疗机制。","authors":"Xudong Li, Yunfeng Lin, Ruomei Niu, Siyuan Chen, Jingyun Pan, Yuquan Zhong, Junqiang Du, Qiuxia Dong, Hongfeng Zhang, Heng Fang, Huiyang Zhu, Wei Zhu","doi":"10.3390/antiox14091093","DOIUrl":null,"url":null,"abstract":"<p><p>Dysregulation of hepatic lipid metabolism constitutes a central mechanism in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). 3,3'-Diindolylmethane (DIM), a bioactive compound abundant in dietary Brassica vegetables, exhibited protective effects on hepatocellular carcinoma and metabolic/inflammatory pathologies. Nevertheless, the effects of DIM on hepatic lipid metabolism and its underlying mechanisms remain unclear. Administration of DIM (50 mg/kg bw/day) prevented oxidative stress and hepatic lipid deposition in both high-fat diet (HFD)-fed wild-type (WT) and ob/ob mice. Lipidomics revealed that DIM diminished the lipogenesis and reshaped the hepatic lipid profile. Network pharmacology analysis identified the AMPK signaling pathway as the underlying mechanistic target for DIM in treating MASLD. In both HepG2 cells and mouse primary hepatocytes (MPH), DIM attenuated palmitic acid (PA)-induced cellular lipid accumulation, ROS generation, and reduction in oxygen consumption rate (OCR). These protective effects of DIM were diminished by co-treatment with Compound C (CC), a specific AMPK inhibitor. DIM administration enhanced AMPKα phosphorylation in vivo (WT/ob/ob mice) and in vitro (HepG2/MPH), concomitant with PPARα upregulation and SREBP1/ACC1 downregulation. CC abolished all DIM-induced molecular changes in vitro. Collectively, DIM alleviates hepatic lipid accumulation and oxidative stress in MASLD models through AMPK activation, subsequently modulating PPARα and SREBP1/ACC1 pathways.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466802/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated Lipidomics and Network Pharmacology Reveal the AMPK-Mediated Therapeutic Mechanism of 3,3'-Diindolylmethane in Hepatic Lipid Metabolism.\",\"authors\":\"Xudong Li, Yunfeng Lin, Ruomei Niu, Siyuan Chen, Jingyun Pan, Yuquan Zhong, Junqiang Du, Qiuxia Dong, Hongfeng Zhang, Heng Fang, Huiyang Zhu, Wei Zhu\",\"doi\":\"10.3390/antiox14091093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dysregulation of hepatic lipid metabolism constitutes a central mechanism in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). 3,3'-Diindolylmethane (DIM), a bioactive compound abundant in dietary Brassica vegetables, exhibited protective effects on hepatocellular carcinoma and metabolic/inflammatory pathologies. Nevertheless, the effects of DIM on hepatic lipid metabolism and its underlying mechanisms remain unclear. Administration of DIM (50 mg/kg bw/day) prevented oxidative stress and hepatic lipid deposition in both high-fat diet (HFD)-fed wild-type (WT) and ob/ob mice. Lipidomics revealed that DIM diminished the lipogenesis and reshaped the hepatic lipid profile. Network pharmacology analysis identified the AMPK signaling pathway as the underlying mechanistic target for DIM in treating MASLD. In both HepG2 cells and mouse primary hepatocytes (MPH), DIM attenuated palmitic acid (PA)-induced cellular lipid accumulation, ROS generation, and reduction in oxygen consumption rate (OCR). These protective effects of DIM were diminished by co-treatment with Compound C (CC), a specific AMPK inhibitor. DIM administration enhanced AMPKα phosphorylation in vivo (WT/ob/ob mice) and in vitro (HepG2/MPH), concomitant with PPARα upregulation and SREBP1/ACC1 downregulation. CC abolished all DIM-induced molecular changes in vitro. Collectively, DIM alleviates hepatic lipid accumulation and oxidative stress in MASLD models through AMPK activation, subsequently modulating PPARα and SREBP1/ACC1 pathways.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466802/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14091093\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091093","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肝脏脂质代谢失调是代谢功能障碍相关脂肪变性肝病(MASLD)发病的核心机制。3,3′-二吲哚基甲烷(DIM)是一种富含甘蓝菜的生物活性化合物,对肝细胞癌和代谢/炎症病理具有保护作用。然而,DIM对肝脏脂质代谢的影响及其潜在机制尚不清楚。给药DIM (50 mg/kg bw/day)可防止高脂饲料(HFD)喂养的野生型(WT)和ob/ob小鼠的氧化应激和肝脏脂质沉积。脂质组学显示DIM减少脂肪生成并重塑肝脏脂质谱。网络药理学分析发现AMPK信号通路是DIM治疗MASLD的潜在机制靶点。在HepG2细胞和小鼠原代肝细胞(MPH)中,DIM减弱了棕榈酸(PA)诱导的细胞脂质积累、ROS生成和氧耗率(OCR)的降低。与化合物C(一种特异性AMPK抑制剂)共处理后,DIM的这些保护作用减弱。DIM在体内(WT/ob/ob小鼠)和体外(HepG2/MPH)增强AMPKα磷酸化,并伴有PPARα上调和SREBP1/ACC1下调。CC在体外消除了所有dim诱导的分子变化。综上所述,DIM通过激活AMPK,进而调节PPARα和SREBP1/ACC1通路,减轻了MASLD模型的肝脏脂质积累和氧化应激。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated Lipidomics and Network Pharmacology Reveal the AMPK-Mediated Therapeutic Mechanism of 3,3'-Diindolylmethane in Hepatic Lipid Metabolism.

Dysregulation of hepatic lipid metabolism constitutes a central mechanism in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). 3,3'-Diindolylmethane (DIM), a bioactive compound abundant in dietary Brassica vegetables, exhibited protective effects on hepatocellular carcinoma and metabolic/inflammatory pathologies. Nevertheless, the effects of DIM on hepatic lipid metabolism and its underlying mechanisms remain unclear. Administration of DIM (50 mg/kg bw/day) prevented oxidative stress and hepatic lipid deposition in both high-fat diet (HFD)-fed wild-type (WT) and ob/ob mice. Lipidomics revealed that DIM diminished the lipogenesis and reshaped the hepatic lipid profile. Network pharmacology analysis identified the AMPK signaling pathway as the underlying mechanistic target for DIM in treating MASLD. In both HepG2 cells and mouse primary hepatocytes (MPH), DIM attenuated palmitic acid (PA)-induced cellular lipid accumulation, ROS generation, and reduction in oxygen consumption rate (OCR). These protective effects of DIM were diminished by co-treatment with Compound C (CC), a specific AMPK inhibitor. DIM administration enhanced AMPKα phosphorylation in vivo (WT/ob/ob mice) and in vitro (HepG2/MPH), concomitant with PPARα upregulation and SREBP1/ACC1 downregulation. CC abolished all DIM-induced molecular changes in vitro. Collectively, DIM alleviates hepatic lipid accumulation and oxidative stress in MASLD models through AMPK activation, subsequently modulating PPARα and SREBP1/ACC1 pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信