Rosa Di Lorenzo, Anna Picca, Guglielmina Chimienti, Christiaan Leeuwenburgh, Vito Pesce, Angela Maria Serena Lezza
{"title":"短期热量限制对老龄大鼠比目鱼肌SIRT3-SOD2轴和线粒体自噬的恢复作用。","authors":"Rosa Di Lorenzo, Anna Picca, Guglielmina Chimienti, Christiaan Leeuwenburgh, Vito Pesce, Angela Maria Serena Lezza","doi":"10.3390/antiox14091125","DOIUrl":null,"url":null,"abstract":"<p><p>Age-related mitochondrial dysfunction is involved in the progressive loss of mass and strength of skeletal muscle with aging. The effects of a short-term calorie restriction (ST-CR) were assessed in the oxidative skeletal soleus muscle (Sol) from 27-month-old rats and compared with those of a CR in combination with resveratrol (RSV) (ST-CR + RSV). PGC-1α and PRXIII proteins showed a marked decrease in both ST-CR and ST-CR + RSV rats. The SIRT3 protein presented a very relevant increase in both ST groups. ST-CR and ST-CR + RSV elicited a marked increase in SOD2 protein amount and activity. ST-CR and ST-CR + RSV led to recovery of the SIRT3-SOD2 axis as a fast/early response. ST-CR and ST-CR + RSV did not affect the MFN2 protein, whereas both treatments induced a relevant increase in DRP1 protein. ST-CR and ST-CR + RSV induced a decrease in Parkin protein, suggestive of rescued mitophagy, leading to the elimination of dysfunctional mitochondria. Such a response likely enhanced the fission-mediated elimination of mitochondria, supported by the marked increase in DRP1. MtDNA copy number and TFAM protein were not changed by any ST treatment. The mtDNA oxidative damage level was strongly increased by both ST treatments. All the effects elicited by ST-CR and ST-CR + RSV were specific to the oxidative type fibers.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466821/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recovery of SIRT3-SOD2 Axis and Mitophagy by Short-Term Calorie Restriction in Old Rat Soleus Skeletal Muscle.\",\"authors\":\"Rosa Di Lorenzo, Anna Picca, Guglielmina Chimienti, Christiaan Leeuwenburgh, Vito Pesce, Angela Maria Serena Lezza\",\"doi\":\"10.3390/antiox14091125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Age-related mitochondrial dysfunction is involved in the progressive loss of mass and strength of skeletal muscle with aging. The effects of a short-term calorie restriction (ST-CR) were assessed in the oxidative skeletal soleus muscle (Sol) from 27-month-old rats and compared with those of a CR in combination with resveratrol (RSV) (ST-CR + RSV). PGC-1α and PRXIII proteins showed a marked decrease in both ST-CR and ST-CR + RSV rats. The SIRT3 protein presented a very relevant increase in both ST groups. ST-CR and ST-CR + RSV elicited a marked increase in SOD2 protein amount and activity. ST-CR and ST-CR + RSV led to recovery of the SIRT3-SOD2 axis as a fast/early response. ST-CR and ST-CR + RSV did not affect the MFN2 protein, whereas both treatments induced a relevant increase in DRP1 protein. ST-CR and ST-CR + RSV induced a decrease in Parkin protein, suggestive of rescued mitophagy, leading to the elimination of dysfunctional mitochondria. Such a response likely enhanced the fission-mediated elimination of mitochondria, supported by the marked increase in DRP1. MtDNA copy number and TFAM protein were not changed by any ST treatment. The mtDNA oxidative damage level was strongly increased by both ST treatments. All the effects elicited by ST-CR and ST-CR + RSV were specific to the oxidative type fibers.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466821/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14091125\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091125","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Recovery of SIRT3-SOD2 Axis and Mitophagy by Short-Term Calorie Restriction in Old Rat Soleus Skeletal Muscle.
Age-related mitochondrial dysfunction is involved in the progressive loss of mass and strength of skeletal muscle with aging. The effects of a short-term calorie restriction (ST-CR) were assessed in the oxidative skeletal soleus muscle (Sol) from 27-month-old rats and compared with those of a CR in combination with resveratrol (RSV) (ST-CR + RSV). PGC-1α and PRXIII proteins showed a marked decrease in both ST-CR and ST-CR + RSV rats. The SIRT3 protein presented a very relevant increase in both ST groups. ST-CR and ST-CR + RSV elicited a marked increase in SOD2 protein amount and activity. ST-CR and ST-CR + RSV led to recovery of the SIRT3-SOD2 axis as a fast/early response. ST-CR and ST-CR + RSV did not affect the MFN2 protein, whereas both treatments induced a relevant increase in DRP1 protein. ST-CR and ST-CR + RSV induced a decrease in Parkin protein, suggestive of rescued mitophagy, leading to the elimination of dysfunctional mitochondria. Such a response likely enhanced the fission-mediated elimination of mitochondria, supported by the marked increase in DRP1. MtDNA copy number and TFAM protein were not changed by any ST treatment. The mtDNA oxidative damage level was strongly increased by both ST treatments. All the effects elicited by ST-CR and ST-CR + RSV were specific to the oxidative type fibers.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.