Shuzhen Zhang, Yimin Zhang, Jiacheng Le, Kuan Yu, Xinliang Chen, Jun Chen, Mo Chen, Yiding Wu, Yang Xu, Song Wang, Chaonan Liu, Junping Wang, Changhong Du
{"title":"阿魏酸通过降低铁下垂易感性促进造血干细胞维持稳态和损伤。","authors":"Shuzhen Zhang, Yimin Zhang, Jiacheng Le, Kuan Yu, Xinliang Chen, Jun Chen, Mo Chen, Yiding Wu, Yang Xu, Song Wang, Chaonan Liu, Junping Wang, Changhong Du","doi":"10.3390/antiox14091053","DOIUrl":null,"url":null,"abstract":"<p><p>Redox balance is essential for maintenance of the hematopoietic stem cell (HSC) pool, which ensures the lifelong hematopoiesis. However, oxidative attack induced by various physiopathological stresses always compromises HSC maintenance, while there remains lack of safe and effective antioxidative measures combating these conditions. Here, we show that ferulic acid (FA), a natural antioxidant abundantly present in Angelica sinensis which is a traditional Chinese herb commonly used for promotion of blood production, distinctively and directly promotes HSC maintenance and thereby boosts hematopoiesis at homeostasis, whether supplemented over the long term in vivo or in HSC culture ex vivo. Using a mouse model of acute myelosuppressive injury induced by ionizing radiation, we further reveal that FA supplementation effectively safeguards HSC maintenance and accelerates hematopoietic regeneration after acute myelosuppressive injury. Mechanistically, FA diminishes ferroptosis susceptibility of HSCs through limiting the labile iron pool (LIP), thus favoring HSC maintenance. In addition, the LIP limitation and anti-ferroptosis activity of FA is independent of nuclear-factor erythroid 2-related factor 2 (NRF2), probably relying on its iron-chelating ability. These findings not only uncover a novel pharmacological action and mechanism of FA in promoting HSC maintenance, but also provides a therapeutic rationale for using FA or FA-rich herbs to treat iron overload- and ferroptosis-associated pathologies such as acute myelosuppressive injury.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466751/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ferulic Acid Promotes Hematopoietic Stem Cell Maintenance in Homeostasis and Injury Through Diminishing Ferroptosis Susceptibility.\",\"authors\":\"Shuzhen Zhang, Yimin Zhang, Jiacheng Le, Kuan Yu, Xinliang Chen, Jun Chen, Mo Chen, Yiding Wu, Yang Xu, Song Wang, Chaonan Liu, Junping Wang, Changhong Du\",\"doi\":\"10.3390/antiox14091053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Redox balance is essential for maintenance of the hematopoietic stem cell (HSC) pool, which ensures the lifelong hematopoiesis. However, oxidative attack induced by various physiopathological stresses always compromises HSC maintenance, while there remains lack of safe and effective antioxidative measures combating these conditions. Here, we show that ferulic acid (FA), a natural antioxidant abundantly present in Angelica sinensis which is a traditional Chinese herb commonly used for promotion of blood production, distinctively and directly promotes HSC maintenance and thereby boosts hematopoiesis at homeostasis, whether supplemented over the long term in vivo or in HSC culture ex vivo. Using a mouse model of acute myelosuppressive injury induced by ionizing radiation, we further reveal that FA supplementation effectively safeguards HSC maintenance and accelerates hematopoietic regeneration after acute myelosuppressive injury. Mechanistically, FA diminishes ferroptosis susceptibility of HSCs through limiting the labile iron pool (LIP), thus favoring HSC maintenance. In addition, the LIP limitation and anti-ferroptosis activity of FA is independent of nuclear-factor erythroid 2-related factor 2 (NRF2), probably relying on its iron-chelating ability. These findings not only uncover a novel pharmacological action and mechanism of FA in promoting HSC maintenance, but also provides a therapeutic rationale for using FA or FA-rich herbs to treat iron overload- and ferroptosis-associated pathologies such as acute myelosuppressive injury.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466751/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14091053\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091053","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ferulic Acid Promotes Hematopoietic Stem Cell Maintenance in Homeostasis and Injury Through Diminishing Ferroptosis Susceptibility.
Redox balance is essential for maintenance of the hematopoietic stem cell (HSC) pool, which ensures the lifelong hematopoiesis. However, oxidative attack induced by various physiopathological stresses always compromises HSC maintenance, while there remains lack of safe and effective antioxidative measures combating these conditions. Here, we show that ferulic acid (FA), a natural antioxidant abundantly present in Angelica sinensis which is a traditional Chinese herb commonly used for promotion of blood production, distinctively and directly promotes HSC maintenance and thereby boosts hematopoiesis at homeostasis, whether supplemented over the long term in vivo or in HSC culture ex vivo. Using a mouse model of acute myelosuppressive injury induced by ionizing radiation, we further reveal that FA supplementation effectively safeguards HSC maintenance and accelerates hematopoietic regeneration after acute myelosuppressive injury. Mechanistically, FA diminishes ferroptosis susceptibility of HSCs through limiting the labile iron pool (LIP), thus favoring HSC maintenance. In addition, the LIP limitation and anti-ferroptosis activity of FA is independent of nuclear-factor erythroid 2-related factor 2 (NRF2), probably relying on its iron-chelating ability. These findings not only uncover a novel pharmacological action and mechanism of FA in promoting HSC maintenance, but also provides a therapeutic rationale for using FA or FA-rich herbs to treat iron overload- and ferroptosis-associated pathologies such as acute myelosuppressive injury.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.