Eirini Kyriakopoulou, Aliki Tsakni, Evangelos Korakidis, George Mpekoulis, Katerina I Kalliampakou, Monika Polanska, Jan F M Van Impe, Efstathia Tsakali, Dimitra Houhoula, Niki Vassilaki
{"title":"希腊药用植物中常见的多酚类化合物对登革热和黄热病病毒的抗氧化和抗病毒活性的评价。","authors":"Eirini Kyriakopoulou, Aliki Tsakni, Evangelos Korakidis, George Mpekoulis, Katerina I Kalliampakou, Monika Polanska, Jan F M Van Impe, Efstathia Tsakali, Dimitra Houhoula, Niki Vassilaki","doi":"10.3390/antiox14091103","DOIUrl":null,"url":null,"abstract":"<p><p>Polyphenolic compounds, commonly found in Greek medicinal plants, exhibit promising antiviral and antioxidant properties, making them potential candidates for therapeutic purposes. This study aims to evaluate the antiviral activity of nine selected polyphenols against Dengue virus (DENV) and Yellow Fever virus (YFV) life cycles, alongside their antioxidant capacity determined by the DPPH method and the ABTS assay, and their ability to inhibit DNA strand scission induced by peroxyl radicals. Kaempferol and caffeic acid demonstrated the most potent inhibitory effects on DENV genome replication, while coumaric acid blocked viral entry more effectively. Notably, among the nine compounds, kaempferol exhibited the strongest anti-DENV effect, especially at the level of virus-released infectivity, showing the lowest EC<sub>50</sub> (3.55 μΜ) and the highest selectivity index (SI = 25.45). In contrast, none of the compounds showed significant antiviral activity against YFV genome replication. Concomitantly, caffeic acid and kaempferol had the highest radical scavenging activity (DPPH and ABTS assays), highlighting their dual properties. Moreover, DNA scission inhibition assays confirmed the strong antioxidant potential of all tested compounds, with caffeic acid and kaempferol achieving the highest inhibition rate of 98.98% and 97.34% respectively. These findings underscore the potential of specific polyphenols, particularly kaempferol and caffeic acid, as antiviral and antioxidant agents targeting DENV and oxidative stress-related damage.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466706/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Polyphenolic Compounds Common in Greek Medicinal Plants for Their Antioxidant Effects and Antiviral Activity Against Dengue and Yellow Fever Viruses.\",\"authors\":\"Eirini Kyriakopoulou, Aliki Tsakni, Evangelos Korakidis, George Mpekoulis, Katerina I Kalliampakou, Monika Polanska, Jan F M Van Impe, Efstathia Tsakali, Dimitra Houhoula, Niki Vassilaki\",\"doi\":\"10.3390/antiox14091103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyphenolic compounds, commonly found in Greek medicinal plants, exhibit promising antiviral and antioxidant properties, making them potential candidates for therapeutic purposes. This study aims to evaluate the antiviral activity of nine selected polyphenols against Dengue virus (DENV) and Yellow Fever virus (YFV) life cycles, alongside their antioxidant capacity determined by the DPPH method and the ABTS assay, and their ability to inhibit DNA strand scission induced by peroxyl radicals. Kaempferol and caffeic acid demonstrated the most potent inhibitory effects on DENV genome replication, while coumaric acid blocked viral entry more effectively. Notably, among the nine compounds, kaempferol exhibited the strongest anti-DENV effect, especially at the level of virus-released infectivity, showing the lowest EC<sub>50</sub> (3.55 μΜ) and the highest selectivity index (SI = 25.45). In contrast, none of the compounds showed significant antiviral activity against YFV genome replication. Concomitantly, caffeic acid and kaempferol had the highest radical scavenging activity (DPPH and ABTS assays), highlighting their dual properties. Moreover, DNA scission inhibition assays confirmed the strong antioxidant potential of all tested compounds, with caffeic acid and kaempferol achieving the highest inhibition rate of 98.98% and 97.34% respectively. These findings underscore the potential of specific polyphenols, particularly kaempferol and caffeic acid, as antiviral and antioxidant agents targeting DENV and oxidative stress-related damage.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466706/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14091103\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091103","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Evaluation of Polyphenolic Compounds Common in Greek Medicinal Plants for Their Antioxidant Effects and Antiviral Activity Against Dengue and Yellow Fever Viruses.
Polyphenolic compounds, commonly found in Greek medicinal plants, exhibit promising antiviral and antioxidant properties, making them potential candidates for therapeutic purposes. This study aims to evaluate the antiviral activity of nine selected polyphenols against Dengue virus (DENV) and Yellow Fever virus (YFV) life cycles, alongside their antioxidant capacity determined by the DPPH method and the ABTS assay, and their ability to inhibit DNA strand scission induced by peroxyl radicals. Kaempferol and caffeic acid demonstrated the most potent inhibitory effects on DENV genome replication, while coumaric acid blocked viral entry more effectively. Notably, among the nine compounds, kaempferol exhibited the strongest anti-DENV effect, especially at the level of virus-released infectivity, showing the lowest EC50 (3.55 μΜ) and the highest selectivity index (SI = 25.45). In contrast, none of the compounds showed significant antiviral activity against YFV genome replication. Concomitantly, caffeic acid and kaempferol had the highest radical scavenging activity (DPPH and ABTS assays), highlighting their dual properties. Moreover, DNA scission inhibition assays confirmed the strong antioxidant potential of all tested compounds, with caffeic acid and kaempferol achieving the highest inhibition rate of 98.98% and 97.34% respectively. These findings underscore the potential of specific polyphenols, particularly kaempferol and caffeic acid, as antiviral and antioxidant agents targeting DENV and oxidative stress-related damage.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.