小豆抗大豆囊线虫相关数量性状位点的鉴定

IF 5 Q1 Agricultural and Biological Sciences
Legume Science Pub Date : 2025-09-23 DOI:10.1002/leg3.70052
Chihiro Souma, Takashi Todai, Fumiko Kousaka, Hidetaka Nagasawa, Reina Ogura, Takako Suzuki
{"title":"小豆抗大豆囊线虫相关数量性状位点的鉴定","authors":"Chihiro Souma,&nbsp;Takashi Todai,&nbsp;Fumiko Kousaka,&nbsp;Hidetaka Nagasawa,&nbsp;Reina Ogura,&nbsp;Takako Suzuki","doi":"10.1002/leg3.70052","DOIUrl":null,"url":null,"abstract":"<p>Soybean cyst nematode (SCN; <i>Heterodera glycines</i> Ichinohe) infection has recently been shown to cause yield loss in adzuki bean (<i>Vigna angularis</i> [Willd.] Ohwi &amp; Ohashi). Development of SCN-resistant cultivars is used extensively to manage SCN in soybean (<i>Glycine max</i> [L.] Merr.). It is considered the most effective way to manage SCN in adzuki bean. Adzuki bean germplasm “Acc2766” shows high resistance to SCN Races 1 and 3, but it is poorly adapted to the environment of Hokkaido because of late maturity. To enable cultivation in this region, genetic improvement is necessary, and development of DNA markers is expected to accelerate breeding for SCN resistance in adzuki bean. Using GRAS-Di technology, 491 single nucleotide polymorphism markers were identified between “Acc2766” and the susceptible cultivar “Shumari.” QTL analysis was performed using individual F<sub>2</sub> plants derived from a cross between “Shumari” and “Acc2766.” Three QTLs associated with SCN resistance were detected: <i>Qrhgaz-1</i> on Chromosome 1, <i>Qrhgaz-8</i> on Chromosome 8, and <i>Qrhgaz-9</i> on Chromosome 9. The results of tests using BC<sub>3</sub>F<sub>3</sub> lines indicated that the introduction of all three QTLs was necessary to confer high resistance. DNA markers closely linked to these QTL regions may be useful for the selection of SCN-resistant lines in future adzuki bean breeding programs.</p>","PeriodicalId":17929,"journal":{"name":"Legume Science","volume":"7 3","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/leg3.70052","citationCount":"0","resultStr":"{\"title\":\"Identification of Adzuki Bean Quantitative Trait Loci Associated With Resistance to Soybean Cyst Nematode\",\"authors\":\"Chihiro Souma,&nbsp;Takashi Todai,&nbsp;Fumiko Kousaka,&nbsp;Hidetaka Nagasawa,&nbsp;Reina Ogura,&nbsp;Takako Suzuki\",\"doi\":\"10.1002/leg3.70052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Soybean cyst nematode (SCN; <i>Heterodera glycines</i> Ichinohe) infection has recently been shown to cause yield loss in adzuki bean (<i>Vigna angularis</i> [Willd.] Ohwi &amp; Ohashi). Development of SCN-resistant cultivars is used extensively to manage SCN in soybean (<i>Glycine max</i> [L.] Merr.). It is considered the most effective way to manage SCN in adzuki bean. Adzuki bean germplasm “Acc2766” shows high resistance to SCN Races 1 and 3, but it is poorly adapted to the environment of Hokkaido because of late maturity. To enable cultivation in this region, genetic improvement is necessary, and development of DNA markers is expected to accelerate breeding for SCN resistance in adzuki bean. Using GRAS-Di technology, 491 single nucleotide polymorphism markers were identified between “Acc2766” and the susceptible cultivar “Shumari.” QTL analysis was performed using individual F<sub>2</sub> plants derived from a cross between “Shumari” and “Acc2766.” Three QTLs associated with SCN resistance were detected: <i>Qrhgaz-1</i> on Chromosome 1, <i>Qrhgaz-8</i> on Chromosome 8, and <i>Qrhgaz-9</i> on Chromosome 9. The results of tests using BC<sub>3</sub>F<sub>3</sub> lines indicated that the introduction of all three QTLs was necessary to confer high resistance. DNA markers closely linked to these QTL regions may be useful for the selection of SCN-resistant lines in future adzuki bean breeding programs.</p>\",\"PeriodicalId\":17929,\"journal\":{\"name\":\"Legume Science\",\"volume\":\"7 3\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/leg3.70052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Legume Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/leg3.70052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Legume Science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/leg3.70052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

大豆囊肿线虫(Heterodera glycine Ichinohe)感染最近被证明会导致小豆(Vigna angularis[野生])的产量损失。[Ohwi &; Ohashi)。抗SCN品种的开发被广泛用于大豆(甘氨酸max [L.])的SCN管理。)稳定)。它被认为是小豆中最有效的管理SCN的方法。小豆种质“Acc2766”对SCN 1、3型表现出较高的抗性,但成熟期较晚,对北海道环境的适应性较差。为了在该地区进行种植,遗传改良是必要的,DNA标记的开发有望加速小豆抗SCN的育种。利用grass - di技术,鉴定了“Acc2766”与敏感品种“舒玛丽”之间的491个单核苷酸多态性标记。利用“Shumari”与“Acc2766”杂交的F2单株进行QTL分析。检测到3个与SCN抗性相关的qtl: 1号染色体上的Qrhgaz-1、8号染色体上的Qrhgaz-8和9号染色体上的Qrhgaz-9。使用BC3F3株系的测试结果表明,所有三个qtl的引入对于获得高抗性是必要的。与这些QTL区域密切相关的DNA标记可能对未来小豆育种计划中抗scn株系的选择有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identification of Adzuki Bean Quantitative Trait Loci Associated With Resistance to Soybean Cyst Nematode

Identification of Adzuki Bean Quantitative Trait Loci Associated With Resistance to Soybean Cyst Nematode

Soybean cyst nematode (SCN; Heterodera glycines Ichinohe) infection has recently been shown to cause yield loss in adzuki bean (Vigna angularis [Willd.] Ohwi & Ohashi). Development of SCN-resistant cultivars is used extensively to manage SCN in soybean (Glycine max [L.] Merr.). It is considered the most effective way to manage SCN in adzuki bean. Adzuki bean germplasm “Acc2766” shows high resistance to SCN Races 1 and 3, but it is poorly adapted to the environment of Hokkaido because of late maturity. To enable cultivation in this region, genetic improvement is necessary, and development of DNA markers is expected to accelerate breeding for SCN resistance in adzuki bean. Using GRAS-Di technology, 491 single nucleotide polymorphism markers were identified between “Acc2766” and the susceptible cultivar “Shumari.” QTL analysis was performed using individual F2 plants derived from a cross between “Shumari” and “Acc2766.” Three QTLs associated with SCN resistance were detected: Qrhgaz-1 on Chromosome 1, Qrhgaz-8 on Chromosome 8, and Qrhgaz-9 on Chromosome 9. The results of tests using BC3F3 lines indicated that the introduction of all three QTLs was necessary to confer high resistance. DNA markers closely linked to these QTL regions may be useful for the selection of SCN-resistant lines in future adzuki bean breeding programs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Legume Science
Legume Science Agricultural and Biological Sciences-Plant Science
CiteScore
7.90
自引率
0.00%
发文量
32
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信