{"title":"等离子体放电用金属电极材料的研究进展:液相放电中的腐蚀和侵蚀机制","authors":"Wei Ye, Jinxuan Cao, Junze Wang, Haixia Wu","doi":"10.1007/s11090-025-10566-z","DOIUrl":null,"url":null,"abstract":"<div><p>Electrodes are core components in plasma discharge technology, and their material selection and structural design directly affect the performance and stability of the system. As plasma technology is widely applied in environmental treatment, materials preparation, and biomedicine, there is a growing demand for optimizing electrode materials. However, the diversity of discharge forms and application scenarios makes it difficult to draw unified conclusions about the applicability and performance of electrode materials across studies, particularly in liquid-phase discharges, where corrosion of metal electrodes becomes more prominent, posing challenges to the selection and design of electrodes. This review systematically summarizes the performance of various metal electrode materials in plasma discharge technology in different applications, particularly the generation of corrosion products in water treatment, disinfection, and sterilization, and their influence on the treatment efficacy.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 4","pages":"1313 - 1336"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in Metallic Electrode Materials for Plasma Discharges Applications: Corrosion and Erosion Mechanisms in Liquid Phase Discharges\",\"authors\":\"Wei Ye, Jinxuan Cao, Junze Wang, Haixia Wu\",\"doi\":\"10.1007/s11090-025-10566-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrodes are core components in plasma discharge technology, and their material selection and structural design directly affect the performance and stability of the system. As plasma technology is widely applied in environmental treatment, materials preparation, and biomedicine, there is a growing demand for optimizing electrode materials. However, the diversity of discharge forms and application scenarios makes it difficult to draw unified conclusions about the applicability and performance of electrode materials across studies, particularly in liquid-phase discharges, where corrosion of metal electrodes becomes more prominent, posing challenges to the selection and design of electrodes. This review systematically summarizes the performance of various metal electrode materials in plasma discharge technology in different applications, particularly the generation of corrosion products in water treatment, disinfection, and sterilization, and their influence on the treatment efficacy.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":\"45 4\",\"pages\":\"1313 - 1336\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-025-10566-z\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10566-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Advancements in Metallic Electrode Materials for Plasma Discharges Applications: Corrosion and Erosion Mechanisms in Liquid Phase Discharges
Electrodes are core components in plasma discharge technology, and their material selection and structural design directly affect the performance and stability of the system. As plasma technology is widely applied in environmental treatment, materials preparation, and biomedicine, there is a growing demand for optimizing electrode materials. However, the diversity of discharge forms and application scenarios makes it difficult to draw unified conclusions about the applicability and performance of electrode materials across studies, particularly in liquid-phase discharges, where corrosion of metal electrodes becomes more prominent, posing challenges to the selection and design of electrodes. This review systematically summarizes the performance of various metal electrode materials in plasma discharge technology in different applications, particularly the generation of corrosion products in water treatment, disinfection, and sterilization, and their influence on the treatment efficacy.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.