{"title":"氢等离子体熔炼还原铬铁矿快速可持续生产铬铁","authors":"Dale Tandersen, Abrar Taimullah, Izzul Islam, Baihaqi Hakim, Yerbolat Makhambetov, Yopi Hendrawan, Taufiq Hidayat, Zulfiadi Zulhan","doi":"10.1007/s11090-025-10564-1","DOIUrl":null,"url":null,"abstract":"<div><p>Stainless steel is one of the most essential materials in daily life due to its corrosion-resistant properties. One of the vital metal components in stainless steel is chromium, which forms a protective layer on the surface of stainless steel when exposed to air. The chromium used in stainless steel production typically comes from ferrochrome, produced through chromite ore's carbothermic reduction. This production process results in CO<sub>2</sub> emissions of 5.4 tCO<sub>2</sub>-eq/t ferrochrome. Hydrogen plasma smelting reduction (HPSR) has emerged as a critical area of contemporary research and development to achieve more sustainable metal production. Here, we show that HPSR can produce ferrochrome containing 50% chromium from chromite ore within 6 min. The ferrochrome produced contains no carbon, which means that no AOD (argon oxygen decarburization) converter nor VOD (vacuum oxygen decarburization) is required for stainless steel manufacturing, which leads to a shorter process route and more sustainable stainless steelmaking.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 4","pages":"1045 - 1062"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid and Sustainable Ferrochrome Production from Chromite Ore by Hydrogen Plasma Smelting Reduction\",\"authors\":\"Dale Tandersen, Abrar Taimullah, Izzul Islam, Baihaqi Hakim, Yerbolat Makhambetov, Yopi Hendrawan, Taufiq Hidayat, Zulfiadi Zulhan\",\"doi\":\"10.1007/s11090-025-10564-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stainless steel is one of the most essential materials in daily life due to its corrosion-resistant properties. One of the vital metal components in stainless steel is chromium, which forms a protective layer on the surface of stainless steel when exposed to air. The chromium used in stainless steel production typically comes from ferrochrome, produced through chromite ore's carbothermic reduction. This production process results in CO<sub>2</sub> emissions of 5.4 tCO<sub>2</sub>-eq/t ferrochrome. Hydrogen plasma smelting reduction (HPSR) has emerged as a critical area of contemporary research and development to achieve more sustainable metal production. Here, we show that HPSR can produce ferrochrome containing 50% chromium from chromite ore within 6 min. The ferrochrome produced contains no carbon, which means that no AOD (argon oxygen decarburization) converter nor VOD (vacuum oxygen decarburization) is required for stainless steel manufacturing, which leads to a shorter process route and more sustainable stainless steelmaking.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":\"45 4\",\"pages\":\"1045 - 1062\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-025-10564-1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10564-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Rapid and Sustainable Ferrochrome Production from Chromite Ore by Hydrogen Plasma Smelting Reduction
Stainless steel is one of the most essential materials in daily life due to its corrosion-resistant properties. One of the vital metal components in stainless steel is chromium, which forms a protective layer on the surface of stainless steel when exposed to air. The chromium used in stainless steel production typically comes from ferrochrome, produced through chromite ore's carbothermic reduction. This production process results in CO2 emissions of 5.4 tCO2-eq/t ferrochrome. Hydrogen plasma smelting reduction (HPSR) has emerged as a critical area of contemporary research and development to achieve more sustainable metal production. Here, we show that HPSR can produce ferrochrome containing 50% chromium from chromite ore within 6 min. The ferrochrome produced contains no carbon, which means that no AOD (argon oxygen decarburization) converter nor VOD (vacuum oxygen decarburization) is required for stainless steel manufacturing, which leads to a shorter process route and more sustainable stainless steelmaking.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.