革命性的学术影响:高级评估、预测模型和未来方向

IF 13.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiaomei Bai, Fuli Zhang, Jiaying Liu, Xiaoxia Wang, Feng Xia
{"title":"革命性的学术影响:高级评估、预测模型和未来方向","authors":"Xiaomei Bai,&nbsp;Fuli Zhang,&nbsp;Jiaying Liu,&nbsp;Xiaoxia Wang,&nbsp;Feng Xia","doi":"10.1007/s10462-025-11315-6","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial intelligence (AI) is revolutionising scholarly impact evaluation and prediction. By integrating AI and machine learning techniques, researchers can leverage diverse academic networks and multiple sources of academic big data. This integration transforms traditional evaluation methods that rely on structured measurements such as citation counts and journal impact factors, into more comprehensive and objective evaluations. In this paper, we dive deep into latest advancements in scholarly impact evaluation and prediction within the context of AI. We categorize existing models, highlighting their similarities and distinctions, with a particular emphasis on AI-enabled approaches. Building upon the analysis, we discuss the ongoing challenges in scholarly impact research and outline future directions in this field.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 10","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11315-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing scholarly impact: advanced evaluations, predictive models, and future directions\",\"authors\":\"Xiaomei Bai,&nbsp;Fuli Zhang,&nbsp;Jiaying Liu,&nbsp;Xiaoxia Wang,&nbsp;Feng Xia\",\"doi\":\"10.1007/s10462-025-11315-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Artificial intelligence (AI) is revolutionising scholarly impact evaluation and prediction. By integrating AI and machine learning techniques, researchers can leverage diverse academic networks and multiple sources of academic big data. This integration transforms traditional evaluation methods that rely on structured measurements such as citation counts and journal impact factors, into more comprehensive and objective evaluations. In this paper, we dive deep into latest advancements in scholarly impact evaluation and prediction within the context of AI. We categorize existing models, highlighting their similarities and distinctions, with a particular emphasis on AI-enabled approaches. Building upon the analysis, we discuss the ongoing challenges in scholarly impact research and outline future directions in this field.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 10\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-025-11315-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-025-11315-6\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11315-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)正在彻底改变学术影响评估和预测。通过整合人工智能和机器学习技术,研究人员可以利用不同的学术网络和多种学术大数据来源。这种整合将传统的评估方法转变为更全面和客观的评估,这些评估方法依赖于结构化的测量,如引用计数和期刊影响因子。在本文中,我们深入探讨了人工智能背景下学术影响评估和预测的最新进展。我们对现有模型进行分类,突出它们的相似性和区别,特别强调支持人工智能的方法。在分析的基础上,我们讨论了学术影响研究中正在面临的挑战,并概述了该领域的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revolutionizing scholarly impact: advanced evaluations, predictive models, and future directions

Artificial intelligence (AI) is revolutionising scholarly impact evaluation and prediction. By integrating AI and machine learning techniques, researchers can leverage diverse academic networks and multiple sources of academic big data. This integration transforms traditional evaluation methods that rely on structured measurements such as citation counts and journal impact factors, into more comprehensive and objective evaluations. In this paper, we dive deep into latest advancements in scholarly impact evaluation and prediction within the context of AI. We categorize existing models, highlighting their similarities and distinctions, with a particular emphasis on AI-enabled approaches. Building upon the analysis, we discuss the ongoing challenges in scholarly impact research and outline future directions in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信