{"title":"周期间隙哈密顿算子和模糊环面的拓扑指标","authors":"Nora Doll, Terry Loring, Hermann Schulz-Baldes","doi":"10.1007/s11040-025-09508-0","DOIUrl":null,"url":null,"abstract":"<div><p>A variety of local index formulas is constructed for gapped quantum Hamiltonians with periodic boundary conditions. All dimensions of physical space as well as many symmetry constraints are covered, notably one-dimensional systems in Class DIII as well as two- and three-dimensional systems in Class AII. The constructions are based on several periodic variations of the spectral localizer and are rooted in the existence of underlying fuzzy tori. For these latter, a general invariant theory is developed.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":"28 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-025-09508-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Topological indices for periodic gapped Hamiltonians and fuzzy tori\",\"authors\":\"Nora Doll, Terry Loring, Hermann Schulz-Baldes\",\"doi\":\"10.1007/s11040-025-09508-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A variety of local index formulas is constructed for gapped quantum Hamiltonians with periodic boundary conditions. All dimensions of physical space as well as many symmetry constraints are covered, notably one-dimensional systems in Class DIII as well as two- and three-dimensional systems in Class AII. The constructions are based on several periodic variations of the spectral localizer and are rooted in the existence of underlying fuzzy tori. For these latter, a general invariant theory is developed.</p></div>\",\"PeriodicalId\":694,\"journal\":{\"name\":\"Mathematical Physics, Analysis and Geometry\",\"volume\":\"28 2\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11040-025-09508-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Physics, Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-025-09508-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-025-09508-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Topological indices for periodic gapped Hamiltonians and fuzzy tori
A variety of local index formulas is constructed for gapped quantum Hamiltonians with periodic boundary conditions. All dimensions of physical space as well as many symmetry constraints are covered, notably one-dimensional systems in Class DIII as well as two- and three-dimensional systems in Class AII. The constructions are based on several periodic variations of the spectral localizer and are rooted in the existence of underlying fuzzy tori. For these latter, a general invariant theory is developed.
期刊介绍:
MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas.
The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process.
The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed.
The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.