偏置-剂量率耦合下PMOS剂量计恒流源电离辐射损伤与精度退化

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jing Sun , Xingyao Zhang , Mengjun Sun , Gang Yu , Yiyuan Wang , Lin Wen , Xuefeng Yu , Qi Guo , Yudong Li
{"title":"偏置-剂量率耦合下PMOS剂量计恒流源电离辐射损伤与精度退化","authors":"Jing Sun ,&nbsp;Xingyao Zhang ,&nbsp;Mengjun Sun ,&nbsp;Gang Yu ,&nbsp;Yiyuan Wang ,&nbsp;Lin Wen ,&nbsp;Xuefeng Yu ,&nbsp;Qi Guo ,&nbsp;Yudong Li","doi":"10.1016/j.microrel.2025.115922","DOIUrl":null,"url":null,"abstract":"<div><div>As an important part of PMOS dosimeter, the radiation resistance of constant current source directly affects its measurement accuracy. This paper mainly analyzes the damage variation law of constant current source in space radiation environment, and studies the ionizing radiation effect of constant current source under different bias and dose rate. The results show that the three-terminal adjustable constant current source increases the percentage of current change caused by ionizing radiation when the constant current source is set to operate at a small current, causing more serious degradation.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"175 ","pages":"Article 115922"},"PeriodicalIF":1.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionizing radiation damage and accuracy degradation in PMOS dosimeter constant current sources under bias-dose rate coupling\",\"authors\":\"Jing Sun ,&nbsp;Xingyao Zhang ,&nbsp;Mengjun Sun ,&nbsp;Gang Yu ,&nbsp;Yiyuan Wang ,&nbsp;Lin Wen ,&nbsp;Xuefeng Yu ,&nbsp;Qi Guo ,&nbsp;Yudong Li\",\"doi\":\"10.1016/j.microrel.2025.115922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As an important part of PMOS dosimeter, the radiation resistance of constant current source directly affects its measurement accuracy. This paper mainly analyzes the damage variation law of constant current source in space radiation environment, and studies the ionizing radiation effect of constant current source under different bias and dose rate. The results show that the three-terminal adjustable constant current source increases the percentage of current change caused by ionizing radiation when the constant current source is set to operate at a small current, causing more serious degradation.</div></div>\",\"PeriodicalId\":51131,\"journal\":{\"name\":\"Microelectronics Reliability\",\"volume\":\"175 \",\"pages\":\"Article 115922\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002627142500335X\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002627142500335X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

恒流源作为PMOS剂量计的重要组成部分,其辐射电阻直接影响其测量精度。本文主要分析了恒流源在空间辐射环境中的损伤变化规律,研究了不同偏压和剂量率下恒流源的电离辐射效应。结果表明,当三端可调恒流源设置为小电流工作时,电离辐射引起的电流变化百分比增加,导致更严重的退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ionizing radiation damage and accuracy degradation in PMOS dosimeter constant current sources under bias-dose rate coupling
As an important part of PMOS dosimeter, the radiation resistance of constant current source directly affects its measurement accuracy. This paper mainly analyzes the damage variation law of constant current source in space radiation environment, and studies the ionizing radiation effect of constant current source under different bias and dose rate. The results show that the three-terminal adjustable constant current source increases the percentage of current change caused by ionizing radiation when the constant current source is set to operate at a small current, causing more serious degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics Reliability
Microelectronics Reliability 工程技术-工程:电子与电气
CiteScore
3.30
自引率
12.50%
发文量
342
审稿时长
68 days
期刊介绍: Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged. Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信