综合微生物学和蛋白质组学分析阐明了鲜奶在工业加工阶段的质量降解机制

IF 8.2 1区 农林科学 Q1 CHEMISTRY, APPLIED
Xudong He , Feiyan Yang , Guangfan Qu , Hanzhi Zhang , Ming Yi , Xu Wang , Shuguo Sun
{"title":"综合微生物学和蛋白质组学分析阐明了鲜奶在工业加工阶段的质量降解机制","authors":"Xudong He ,&nbsp;Feiyan Yang ,&nbsp;Guangfan Qu ,&nbsp;Hanzhi Zhang ,&nbsp;Ming Yi ,&nbsp;Xu Wang ,&nbsp;Shuguo Sun","doi":"10.1016/j.fochx.2025.103062","DOIUrl":null,"url":null,"abstract":"<div><div>Fresh milk quality deterioration during processing is a major dairy challenge, with microbial-driven protein degradation mechanisms unclear. This study pioneers an integrated microbiome-proteome approach to systematically elucidate the dynamic interplay between microbial succession and protein quality changes during industrial processing. Microbial community analysis revealed oscillatory richness, with 2.3-fold and 1.8-fold increases during pre-treatment (PL) and refrigerated transport (RC), respectively. Pseudomonas (12.4 % → 31.7 %) and Acinetobacter (8.1 % → 19.3 %) dominated key phases, with proteomics showing significant nutrient loss (IgM: −69.8 %; IgG: −54.15 %). Integrating microbial metagenomics with proteolytic pathway analysis identified proteases from Pseudomonas and Acinetobacter as key drivers of protein degradation (68 % activity). Pasteurization cut microbial load by 82 % but paradoxically intensified nutrient loss via protein denaturation. Crucially, our data establish a time-dependent degradation model, revealing that combined microbial enzymatic action and thermal effects account for 76 % of total protein hydrolysis, providing a theoretical framework for developing targeted intervention strategies in dairy processing optimization.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"31 ","pages":"Article 103062"},"PeriodicalIF":8.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated microbial and proteomic analysis elucidates quality degradation mechanisms of fresh milk through the industrial processing stage\",\"authors\":\"Xudong He ,&nbsp;Feiyan Yang ,&nbsp;Guangfan Qu ,&nbsp;Hanzhi Zhang ,&nbsp;Ming Yi ,&nbsp;Xu Wang ,&nbsp;Shuguo Sun\",\"doi\":\"10.1016/j.fochx.2025.103062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fresh milk quality deterioration during processing is a major dairy challenge, with microbial-driven protein degradation mechanisms unclear. This study pioneers an integrated microbiome-proteome approach to systematically elucidate the dynamic interplay between microbial succession and protein quality changes during industrial processing. Microbial community analysis revealed oscillatory richness, with 2.3-fold and 1.8-fold increases during pre-treatment (PL) and refrigerated transport (RC), respectively. Pseudomonas (12.4 % → 31.7 %) and Acinetobacter (8.1 % → 19.3 %) dominated key phases, with proteomics showing significant nutrient loss (IgM: −69.8 %; IgG: −54.15 %). Integrating microbial metagenomics with proteolytic pathway analysis identified proteases from Pseudomonas and Acinetobacter as key drivers of protein degradation (68 % activity). Pasteurization cut microbial load by 82 % but paradoxically intensified nutrient loss via protein denaturation. Crucially, our data establish a time-dependent degradation model, revealing that combined microbial enzymatic action and thermal effects account for 76 % of total protein hydrolysis, providing a theoretical framework for developing targeted intervention strategies in dairy processing optimization.</div></div>\",\"PeriodicalId\":12334,\"journal\":{\"name\":\"Food Chemistry: X\",\"volume\":\"31 \",\"pages\":\"Article 103062\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry: X\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590157525009095\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157525009095","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

鲜奶在加工过程中质量恶化是乳品业面临的主要挑战,微生物驱动的蛋白质降解机制尚不清楚。本研究开创了一种综合微生物组-蛋白质组方法,系统地阐明了工业加工过程中微生物演替与蛋白质质量变化之间的动态相互作用。微生物群落分析显示振荡丰富度,预处理(PL)和冷藏运输(RC)分别增加2.3倍和1.8倍。假单胞菌(12.4%→31.7%)和不动杆菌(8.1%→19.3%)主导关键期,蛋白质组学显示显著的营养损失(IgM: - 69.8%; IgG: - 54.15%)。结合微生物宏基因组学和蛋白质水解途径分析,发现假单胞菌和不动杆菌的蛋白酶是蛋白质降解的关键驱动因素(68%的活性)。巴氏灭菌减少了82%的微生物负荷,但矛盾的是,通过蛋白质变性加剧了营养损失。至关重要的是,我们的数据建立了一个时间依赖的降解模型,揭示了微生物酶促作用和热效应的结合占总蛋白质水解的76%,为在乳制品加工优化中制定有针对性的干预策略提供了理论框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated microbial and proteomic analysis elucidates quality degradation mechanisms of fresh milk through the industrial processing stage
Fresh milk quality deterioration during processing is a major dairy challenge, with microbial-driven protein degradation mechanisms unclear. This study pioneers an integrated microbiome-proteome approach to systematically elucidate the dynamic interplay between microbial succession and protein quality changes during industrial processing. Microbial community analysis revealed oscillatory richness, with 2.3-fold and 1.8-fold increases during pre-treatment (PL) and refrigerated transport (RC), respectively. Pseudomonas (12.4 % → 31.7 %) and Acinetobacter (8.1 % → 19.3 %) dominated key phases, with proteomics showing significant nutrient loss (IgM: −69.8 %; IgG: −54.15 %). Integrating microbial metagenomics with proteolytic pathway analysis identified proteases from Pseudomonas and Acinetobacter as key drivers of protein degradation (68 % activity). Pasteurization cut microbial load by 82 % but paradoxically intensified nutrient loss via protein denaturation. Crucially, our data establish a time-dependent degradation model, revealing that combined microbial enzymatic action and thermal effects account for 76 % of total protein hydrolysis, providing a theoretical framework for developing targeted intervention strategies in dairy processing optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry: X
Food Chemistry: X CHEMISTRY, APPLIED-
CiteScore
4.90
自引率
6.60%
发文量
315
审稿时长
55 days
期刊介绍: Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信