综合代谢组学- kpca -机器学习框架:枣树地理溯源的解决方案

IF 8.2 1区 农林科学 Q1 CHEMISTRY, APPLIED
Xiaoli Wang , Xiaolei Ma , Yuxin Liu, Wenhan Tao, Yuting Zuo, Yueqin Zhu, Feng Hua, Chanming Liu, Wei Huang
{"title":"综合代谢组学- kpca -机器学习框架:枣树地理溯源的解决方案","authors":"Xiaoli Wang ,&nbsp;Xiaolei Ma ,&nbsp;Yuxin Liu,&nbsp;Wenhan Tao,&nbsp;Yuting Zuo,&nbsp;Yueqin Zhu,&nbsp;Feng Hua,&nbsp;Chanming Liu,&nbsp;Wei Huang","doi":"10.1016/j.fochx.2025.103069","DOIUrl":null,"url":null,"abstract":"<div><div>Due to widespread product adulteration, Chinese jujube (CJ), a crop of global economic importance with nutritional and medicinal properties, struggles with geographical traceability. The study introduced a Metabolomics-Kernel Principal Component Analysis (KPCA)-Machine Learning (ML) framework to set up an origin identification system for CJ from six production regions in China (Xinjiang, Gansu, Shaanxi, Henan, Shandong, and Hebei). Using LC-MS/MS for untargeted metabolomics, researchers identified 312 metabolites. Multivariate analysis revealed 37 key discriminant variables (VIP &gt; 1). KPCA compressed these features into 28 principal components (retaining 90.59 % information). Compared with the traditional method, the K-means clustering after dimensionality reduction of KPCA greatly improves the sample differentiation ability: the origin samples with original data overlap with fuzzy boundaries; while after dimensionality reduction, the six origin samples form a clear and compact cluster, which achieves accurate classification. This study pioneers a “Metabolomics-KPCA-ML” paradigm, offering a solution for traceability of geographical indication agricultural products.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"31 ","pages":"Article 103069"},"PeriodicalIF":8.2000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Metabolomics-KPCA-Machine Learning framework: a solution for geographical traceability of Chinese Jujube\",\"authors\":\"Xiaoli Wang ,&nbsp;Xiaolei Ma ,&nbsp;Yuxin Liu,&nbsp;Wenhan Tao,&nbsp;Yuting Zuo,&nbsp;Yueqin Zhu,&nbsp;Feng Hua,&nbsp;Chanming Liu,&nbsp;Wei Huang\",\"doi\":\"10.1016/j.fochx.2025.103069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to widespread product adulteration, Chinese jujube (CJ), a crop of global economic importance with nutritional and medicinal properties, struggles with geographical traceability. The study introduced a Metabolomics-Kernel Principal Component Analysis (KPCA)-Machine Learning (ML) framework to set up an origin identification system for CJ from six production regions in China (Xinjiang, Gansu, Shaanxi, Henan, Shandong, and Hebei). Using LC-MS/MS for untargeted metabolomics, researchers identified 312 metabolites. Multivariate analysis revealed 37 key discriminant variables (VIP &gt; 1). KPCA compressed these features into 28 principal components (retaining 90.59 % information). Compared with the traditional method, the K-means clustering after dimensionality reduction of KPCA greatly improves the sample differentiation ability: the origin samples with original data overlap with fuzzy boundaries; while after dimensionality reduction, the six origin samples form a clear and compact cluster, which achieves accurate classification. This study pioneers a “Metabolomics-KPCA-ML” paradigm, offering a solution for traceability of geographical indication agricultural products.</div></div>\",\"PeriodicalId\":12334,\"journal\":{\"name\":\"Food Chemistry: X\",\"volume\":\"31 \",\"pages\":\"Article 103069\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry: X\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590157525009162\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157525009162","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

由于产品普遍掺假,具有全球经济重要性的具有营养和药用特性的中国枣(CJ)在地理可追溯性方面遇到了困难。本研究采用代谢组学-核主成分分析(KPCA)-机器学习(ML)框架,建立了中国6个产区(新疆、甘肃、陕西、河南、山东和河北)CJ产地识别系统。利用LC-MS/MS进行非靶向代谢组学,研究人员鉴定出312种代谢物。多变量分析发现37个关键判别变量(VIP > 1)。KPCA将这些特征压缩为28个主成分(保留90.59%的信息)。与传统方法相比,KPCA降维后的K-means聚类大大提高了样本区分能力:原始数据的原始样本与模糊边界重叠;而在降维后,6个原始样本形成了一个清晰紧凑的聚类,实现了准确的分类。该研究开创了“代谢组学- kpca - ml”范式,为地理标志农产品的可追溯性提供了解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrated Metabolomics-KPCA-Machine Learning framework: a solution for geographical traceability of Chinese Jujube

Integrated Metabolomics-KPCA-Machine Learning framework: a solution for geographical traceability of Chinese Jujube
Due to widespread product adulteration, Chinese jujube (CJ), a crop of global economic importance with nutritional and medicinal properties, struggles with geographical traceability. The study introduced a Metabolomics-Kernel Principal Component Analysis (KPCA)-Machine Learning (ML) framework to set up an origin identification system for CJ from six production regions in China (Xinjiang, Gansu, Shaanxi, Henan, Shandong, and Hebei). Using LC-MS/MS for untargeted metabolomics, researchers identified 312 metabolites. Multivariate analysis revealed 37 key discriminant variables (VIP > 1). KPCA compressed these features into 28 principal components (retaining 90.59 % information). Compared with the traditional method, the K-means clustering after dimensionality reduction of KPCA greatly improves the sample differentiation ability: the origin samples with original data overlap with fuzzy boundaries; while after dimensionality reduction, the six origin samples form a clear and compact cluster, which achieves accurate classification. This study pioneers a “Metabolomics-KPCA-ML” paradigm, offering a solution for traceability of geographical indication agricultural products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry: X
Food Chemistry: X CHEMISTRY, APPLIED-
CiteScore
4.90
自引率
6.60%
发文量
315
审稿时长
55 days
期刊介绍: Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信