Xueying Li , Ji-Ming Guo , Fenglei Tian , Zhiwen Wang
{"title":"改进的拉普拉斯特征值2(无符号)多重性的上界","authors":"Xueying Li , Ji-Ming Guo , Fenglei Tian , Zhiwen Wang","doi":"10.1016/j.laa.2025.09.012","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <em>G</em>, let <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> (resp., <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span>) denote the multiplicity of Laplacian (resp., signless Laplacian) eigenvalue 2 of <em>G</em>. Wang et al. (2021) <span><span>[18]</span></span> proved that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo><mo>≤</mo><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span> for a connected graph <em>G</em>, where <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the cyclomatic number of <em>G</em>. Very recently, Zhao and Yu (2025) <span><span>[19]</span></span> proved that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo><mo>≤</mo><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span> for a connected graph with a perfect matching. Let <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the even cyclomatic number of <em>G</em>, defined as the minimum number of edges whose deletion eliminates all even cycles in <em>G</em>. In this paper, for a connected graph <em>G</em>, we prove that<span><span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn><mspace></mspace><mtext>and</mtext><mspace></mspace><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn><mo>,</mo></math></span></span></span> improving the two aforementioned results since <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 419-434"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved upper bound of multiplicity of (signless) Laplacian eigenvalue two\",\"authors\":\"Xueying Li , Ji-Ming Guo , Fenglei Tian , Zhiwen Wang\",\"doi\":\"10.1016/j.laa.2025.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a graph <em>G</em>, let <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> (resp., <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span>) denote the multiplicity of Laplacian (resp., signless Laplacian) eigenvalue 2 of <em>G</em>. Wang et al. (2021) <span><span>[18]</span></span> proved that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo><mo>≤</mo><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span> for a connected graph <em>G</em>, where <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the cyclomatic number of <em>G</em>. Very recently, Zhao and Yu (2025) <span><span>[19]</span></span> proved that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo><mo>≤</mo><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span> for a connected graph with a perfect matching. Let <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the even cyclomatic number of <em>G</em>, defined as the minimum number of edges whose deletion eliminates all even cycles in <em>G</em>. In this paper, for a connected graph <em>G</em>, we prove that<span><span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn><mspace></mspace><mtext>and</mtext><mspace></mspace><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn><mo>,</mo></math></span></span></span> improving the two aforementioned results since <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"728 \",\"pages\":\"Pages 419-434\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525003854\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003854","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于图G,设mL(G,2) (p。, mQ(G,2))表示拉普拉斯函数的多重性。G. Wang et al.(2021)[18]证明了连通图G的mL(G,2)≤c(G)+1,其中c(G)是G的圈数。最近,Zhao and Yu(2025)[19]证明了具有完美匹配的连通图的mQ(G,2)≤c(G)+1。设c2(G)为G的偶圈数,定义为删除G中所有偶圈即可消除的最小边数。对于连通图G,我们证明了ml (G,2)≤c2(G)+1和mq (G,2)≤c2(G)+1,改进了前面两个结果,因为c2(G)≤c(G)。
Improved upper bound of multiplicity of (signless) Laplacian eigenvalue two
For a graph G, let (resp., ) denote the multiplicity of Laplacian (resp., signless Laplacian) eigenvalue 2 of G. Wang et al. (2021) [18] proved that for a connected graph G, where is the cyclomatic number of G. Very recently, Zhao and Yu (2025) [19] proved that for a connected graph with a perfect matching. Let be the even cyclomatic number of G, defined as the minimum number of edges whose deletion eliminates all even cycles in G. In this paper, for a connected graph G, we prove that improving the two aforementioned results since .
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.