改进的拉普拉斯特征值2(无符号)多重性的上界

IF 1.1 3区 数学 Q1 MATHEMATICS
Xueying Li , Ji-Ming Guo , Fenglei Tian , Zhiwen Wang
{"title":"改进的拉普拉斯特征值2(无符号)多重性的上界","authors":"Xueying Li ,&nbsp;Ji-Ming Guo ,&nbsp;Fenglei Tian ,&nbsp;Zhiwen Wang","doi":"10.1016/j.laa.2025.09.012","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <em>G</em>, let <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> (resp., <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span>) denote the multiplicity of Laplacian (resp., signless Laplacian) eigenvalue 2 of <em>G</em>. Wang et al. (2021) <span><span>[18]</span></span> proved that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo><mo>≤</mo><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span> for a connected graph <em>G</em>, where <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the cyclomatic number of <em>G</em>. Very recently, Zhao and Yu (2025) <span><span>[19]</span></span> proved that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo><mo>≤</mo><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span> for a connected graph with a perfect matching. Let <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the even cyclomatic number of <em>G</em>, defined as the minimum number of edges whose deletion eliminates all even cycles in <em>G</em>. In this paper, for a connected graph <em>G</em>, we prove that<span><span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn><mspace></mspace><mtext>and</mtext><mspace></mspace><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn><mo>,</mo></math></span></span></span> improving the two aforementioned results since <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 419-434"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved upper bound of multiplicity of (signless) Laplacian eigenvalue two\",\"authors\":\"Xueying Li ,&nbsp;Ji-Ming Guo ,&nbsp;Fenglei Tian ,&nbsp;Zhiwen Wang\",\"doi\":\"10.1016/j.laa.2025.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a graph <em>G</em>, let <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> (resp., <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span>) denote the multiplicity of Laplacian (resp., signless Laplacian) eigenvalue 2 of <em>G</em>. Wang et al. (2021) <span><span>[18]</span></span> proved that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo><mo>≤</mo><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span> for a connected graph <em>G</em>, where <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the cyclomatic number of <em>G</em>. Very recently, Zhao and Yu (2025) <span><span>[19]</span></span> proved that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo><mo>≤</mo><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span> for a connected graph with a perfect matching. Let <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the even cyclomatic number of <em>G</em>, defined as the minimum number of edges whose deletion eliminates all even cycles in <em>G</em>. In this paper, for a connected graph <em>G</em>, we prove that<span><span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn><mspace></mspace><mtext>and</mtext><mspace></mspace><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn><mo>,</mo></math></span></span></span> improving the two aforementioned results since <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"728 \",\"pages\":\"Pages 419-434\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525003854\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003854","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于图G,设mL(G,2) (p。, mQ(G,2))表示拉普拉斯函数的多重性。G. Wang et al.(2021)[18]证明了连通图G的mL(G,2)≤c(G)+1,其中c(G)是G的圈数。最近,Zhao and Yu(2025)[19]证明了具有完美匹配的连通图的mQ(G,2)≤c(G)+1。设c2(G)为G的偶圈数,定义为删除G中所有偶圈即可消除的最小边数。对于连通图G,我们证明了ml (G,2)≤c2(G)+1和mq (G,2)≤c2(G)+1,改进了前面两个结果,因为c2(G)≤c(G)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved upper bound of multiplicity of (signless) Laplacian eigenvalue two
For a graph G, let mL(G,2) (resp., mQ(G,2)) denote the multiplicity of Laplacian (resp., signless Laplacian) eigenvalue 2 of G. Wang et al. (2021) [18] proved that mL(G,2)c(G)+1 for a connected graph G, where c(G) is the cyclomatic number of G. Very recently, Zhao and Yu (2025) [19] proved that mQ(G,2)c(G)+1 for a connected graph with a perfect matching. Let c2(G) be the even cyclomatic number of G, defined as the minimum number of edges whose deletion eliminates all even cycles in G. In this paper, for a connected graph G, we prove thatmL(G,2)c2(G)+1andmQ(G,2)c2(G)+1, improving the two aforementioned results since c2(G)c(G).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信