关于一类Steinberg代数的积分

IF 1.1 3区 数学 Q1 MATHEMATICS
Lisa Orloff Clark , Cristóbal Gil Canto , Dolores Martín Barquero , Cándido Martín González , Iván Ruiz Campos
{"title":"关于一类Steinberg代数的积分","authors":"Lisa Orloff Clark ,&nbsp;Cristóbal Gil Canto ,&nbsp;Dolores Martín Barquero ,&nbsp;Cándido Martín González ,&nbsp;Iván Ruiz Campos","doi":"10.1016/j.laa.2025.09.016","DOIUrl":null,"url":null,"abstract":"<div><div>We study minimal left ideals in Steinberg algebras of Hausdorff groupoids. We establish a relationship between minimal left ideals in the algebra and open singletons in the unit space of the groupoid. We apply this to obtain results about the socle of Steinberg algebras under certain hypotheses. This encompasses known results about Leavitt path algebras and improves on Kumjian-Pask algebra results to include higher-rank graphs that are not row-finite.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 449-464"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the socle of a class of Steinberg algebras\",\"authors\":\"Lisa Orloff Clark ,&nbsp;Cristóbal Gil Canto ,&nbsp;Dolores Martín Barquero ,&nbsp;Cándido Martín González ,&nbsp;Iván Ruiz Campos\",\"doi\":\"10.1016/j.laa.2025.09.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study minimal left ideals in Steinberg algebras of Hausdorff groupoids. We establish a relationship between minimal left ideals in the algebra and open singletons in the unit space of the groupoid. We apply this to obtain results about the socle of Steinberg algebras under certain hypotheses. This encompasses known results about Leavitt path algebras and improves on Kumjian-Pask algebra results to include higher-rank graphs that are not row-finite.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"728 \",\"pages\":\"Pages 449-464\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525003891\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003891","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了Hausdorff群的Steinberg代数中的极小左理想。建立了代数上的极小左理想与群类群的单位空间上的开单子之间的关系。应用这一方法,得到了在某些假设下关于Steinberg代数集的结果。这包含了关于Leavitt路径代数的已知结果,并改进了Kumjian-Pask代数的结果,以包含非行有限的高秩图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the socle of a class of Steinberg algebras
We study minimal left ideals in Steinberg algebras of Hausdorff groupoids. We establish a relationship between minimal left ideals in the algebra and open singletons in the unit space of the groupoid. We apply this to obtain results about the socle of Steinberg algebras under certain hypotheses. This encompasses known results about Leavitt path algebras and improves on Kumjian-Pask algebra results to include higher-rank graphs that are not row-finite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信