超越口腔生态位:副干酪乳杆菌LPC-37开启口腔-胃-肠串扰,缓解丁酸依赖性口腔炎症。

IF 5.4 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Food & Function Pub Date : 2025-09-26 DOI:10.1039/d5fo02279g
Yonglu Li, Xin Gao, Lihan Jiang, Hongdi Song, Chen Yang, Cong Wu, Yapeng Li, Shihai Yan, Ping Li, Qing Gu
{"title":"超越口腔生态位:副干酪乳杆菌LPC-37开启口腔-胃-肠串扰,缓解丁酸依赖性口腔炎症。","authors":"Yonglu Li, Xin Gao, Lihan Jiang, Hongdi Song, Chen Yang, Cong Wu, Yapeng Li, Shihai Yan, Ping Li, Qing Gu","doi":"10.1039/d5fo02279g","DOIUrl":null,"url":null,"abstract":"<p><p>Oral inflammatory diseases are prevalent yet poorly understood in the context of systemic microbiota interactions along the oral-gastric-intestinal axis. Current interventions primarily target direct inflammation inhibition <i>in situ</i>, leaving the cross-compartmental microbial mechanisms underlying oral inflammation underexplored. Moreover, the therapeutic potential of probiotics in modulating multi-site microbiota dynamics to alleviate oral inflammation remains limited by insufficient mechanistic insights. Using an acetic acid-induced oral inflammatory mouse model, this study systematically tracked alterations in the digestive microbiota across distinct gastrointestinal compartments during oral inflammation progression, thereby elucidating the microbiota-driven mechanisms of oral inflammation through both holistic and site-specific analyses of the digestive tract. Additionally, the potent anti-inflammatory efficacy of the commercially utilized probiotic <i>Lacticaseibacillus paracasei</i> LPC-37 was evaluated. The anti-inflammatory mechanism of LPC-37 was deciphered through microbiota structural analysis, gastrointestinal survival assessment, co-culture characterization, and short-chain fatty acid profiling. LPC-37, exhibiting robust gastrointestinal resistance, demonstrated enhanced intestinal colonization. This promoted a synergistic interaction with same-family bacteria to elevate <i>Ligilactobacillus</i> abundance, enabling antagonism against the marker microbe <i>Aerococcus</i> while upregulating <i>Clostridium saccharolyticum</i> WM1, a butyrate-producing strain. These microbial shifts drove butyrate biosynthesis, ultimately alleviating oral inflammation. The findings unravel a systemic microbiota interplay along the oral-gastric-intestinal axis and propose a novel probiotic-based strategy for anti-oral-inflammatory therapy.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond the oral niche: <i>Lacticaseibacillus paracasei</i> LPC-37 unlocks oral-gastric-intestinal crosstalk for butyric acid-dependent oral inflammation alleviation.\",\"authors\":\"Yonglu Li, Xin Gao, Lihan Jiang, Hongdi Song, Chen Yang, Cong Wu, Yapeng Li, Shihai Yan, Ping Li, Qing Gu\",\"doi\":\"10.1039/d5fo02279g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oral inflammatory diseases are prevalent yet poorly understood in the context of systemic microbiota interactions along the oral-gastric-intestinal axis. Current interventions primarily target direct inflammation inhibition <i>in situ</i>, leaving the cross-compartmental microbial mechanisms underlying oral inflammation underexplored. Moreover, the therapeutic potential of probiotics in modulating multi-site microbiota dynamics to alleviate oral inflammation remains limited by insufficient mechanistic insights. Using an acetic acid-induced oral inflammatory mouse model, this study systematically tracked alterations in the digestive microbiota across distinct gastrointestinal compartments during oral inflammation progression, thereby elucidating the microbiota-driven mechanisms of oral inflammation through both holistic and site-specific analyses of the digestive tract. Additionally, the potent anti-inflammatory efficacy of the commercially utilized probiotic <i>Lacticaseibacillus paracasei</i> LPC-37 was evaluated. The anti-inflammatory mechanism of LPC-37 was deciphered through microbiota structural analysis, gastrointestinal survival assessment, co-culture characterization, and short-chain fatty acid profiling. LPC-37, exhibiting robust gastrointestinal resistance, demonstrated enhanced intestinal colonization. This promoted a synergistic interaction with same-family bacteria to elevate <i>Ligilactobacillus</i> abundance, enabling antagonism against the marker microbe <i>Aerococcus</i> while upregulating <i>Clostridium saccharolyticum</i> WM1, a butyrate-producing strain. These microbial shifts drove butyrate biosynthesis, ultimately alleviating oral inflammation. The findings unravel a systemic microbiota interplay along the oral-gastric-intestinal axis and propose a novel probiotic-based strategy for anti-oral-inflammatory therapy.</p>\",\"PeriodicalId\":77,\"journal\":{\"name\":\"Food & Function\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food & Function\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1039/d5fo02279g\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d5fo02279g","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

口腔炎症性疾病很普遍,但在口腔-胃-肠轴的全身性微生物群相互作用的背景下,人们对其知之甚少。目前的干预措施主要针对直接的原位炎症抑制,使得口腔炎症的跨区微生物机制未被充分探索。此外,益生菌在调节多位点微生物群动态以减轻口腔炎症方面的治疗潜力仍然受到机制认识不足的限制。利用醋酸诱导的口腔炎症小鼠模型,本研究系统地追踪了口腔炎症进展过程中不同胃肠道消化微生物群的变化,从而通过对消化道的整体和部位特异性分析阐明了微生物群驱动的口腔炎症机制。此外,对商业上使用的副干酪乳杆菌LPC-37的有效抗炎功效进行了评估。通过微生物群结构分析、胃肠生存评估、共培养表征和短链脂肪酸谱分析来解读LPC-37的抗炎机制。LPC-37表现出强大的胃肠道耐药性,表明肠道定植增强。这促进了与同科细菌的协同相互作用,提高了Ligilactobacillus的丰度,使其能够对抗标记微生物Aerococcus,同时上调了Clostridium saccharolyticum WM1(一种产生丁酸盐的菌株)。这些微生物转变推动了丁酸盐的生物合成,最终减轻了口腔炎症。研究结果揭示了沿口腔-胃-肠轴的系统性微生物群相互作用,并提出了一种新的基于益生菌的抗口腔炎症治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond the oral niche: Lacticaseibacillus paracasei LPC-37 unlocks oral-gastric-intestinal crosstalk for butyric acid-dependent oral inflammation alleviation.

Oral inflammatory diseases are prevalent yet poorly understood in the context of systemic microbiota interactions along the oral-gastric-intestinal axis. Current interventions primarily target direct inflammation inhibition in situ, leaving the cross-compartmental microbial mechanisms underlying oral inflammation underexplored. Moreover, the therapeutic potential of probiotics in modulating multi-site microbiota dynamics to alleviate oral inflammation remains limited by insufficient mechanistic insights. Using an acetic acid-induced oral inflammatory mouse model, this study systematically tracked alterations in the digestive microbiota across distinct gastrointestinal compartments during oral inflammation progression, thereby elucidating the microbiota-driven mechanisms of oral inflammation through both holistic and site-specific analyses of the digestive tract. Additionally, the potent anti-inflammatory efficacy of the commercially utilized probiotic Lacticaseibacillus paracasei LPC-37 was evaluated. The anti-inflammatory mechanism of LPC-37 was deciphered through microbiota structural analysis, gastrointestinal survival assessment, co-culture characterization, and short-chain fatty acid profiling. LPC-37, exhibiting robust gastrointestinal resistance, demonstrated enhanced intestinal colonization. This promoted a synergistic interaction with same-family bacteria to elevate Ligilactobacillus abundance, enabling antagonism against the marker microbe Aerococcus while upregulating Clostridium saccharolyticum WM1, a butyrate-producing strain. These microbial shifts drove butyrate biosynthesis, ultimately alleviating oral inflammation. The findings unravel a systemic microbiota interplay along the oral-gastric-intestinal axis and propose a novel probiotic-based strategy for anti-oral-inflammatory therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信