{"title":"结合量子纠缠的多群协同进化优化算法在跨场应用中的应用","authors":"Zhaoyang Lian, Bailu Si","doi":"10.1007/s10462-025-11279-7","DOIUrl":null,"url":null,"abstract":"<div><p>Swarm intelligence algorithms are a class of bionic probabilistic heuristic search methods that are inspired by the collective behaviors of biological agents. In this paper, a multigroup cooperative evolutionary optimization algorithm is proposed by referring to the interaction behaviors of species diversity and stability in the ecosystem. First, the group updating mechanism of the traditional seeking and tracking mode with a dynamic population update mechanism is adopted. The multi-population interactive update group and the quantum entanglement update group are introduced to guide the algorithm to gradually approach the global optimal solution. Second, the proposed bionic algorithm is extended for cross-field applications. The algorithm is applied to solve the function optimization problems, as well as problems in four distinct application fields, including robot routing optimization of grid maps, vehicle scheduling optimization of dairy enterprises, location optimization of logistics centers, and plasma trajectory planning optimization. The proposed multigroup cooperative evolutionary optimization algorithm achieves competitive results in these application fields, thus demonstrating its versatility and robustness.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 10","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11279-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Multigroup cooperative evolutionary optimization algorithm combined with quantum entanglement for cross-field applications\",\"authors\":\"Zhaoyang Lian, Bailu Si\",\"doi\":\"10.1007/s10462-025-11279-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Swarm intelligence algorithms are a class of bionic probabilistic heuristic search methods that are inspired by the collective behaviors of biological agents. In this paper, a multigroup cooperative evolutionary optimization algorithm is proposed by referring to the interaction behaviors of species diversity and stability in the ecosystem. First, the group updating mechanism of the traditional seeking and tracking mode with a dynamic population update mechanism is adopted. The multi-population interactive update group and the quantum entanglement update group are introduced to guide the algorithm to gradually approach the global optimal solution. Second, the proposed bionic algorithm is extended for cross-field applications. The algorithm is applied to solve the function optimization problems, as well as problems in four distinct application fields, including robot routing optimization of grid maps, vehicle scheduling optimization of dairy enterprises, location optimization of logistics centers, and plasma trajectory planning optimization. The proposed multigroup cooperative evolutionary optimization algorithm achieves competitive results in these application fields, thus demonstrating its versatility and robustness.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 10\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-025-11279-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-025-11279-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11279-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multigroup cooperative evolutionary optimization algorithm combined with quantum entanglement for cross-field applications
Swarm intelligence algorithms are a class of bionic probabilistic heuristic search methods that are inspired by the collective behaviors of biological agents. In this paper, a multigroup cooperative evolutionary optimization algorithm is proposed by referring to the interaction behaviors of species diversity and stability in the ecosystem. First, the group updating mechanism of the traditional seeking and tracking mode with a dynamic population update mechanism is adopted. The multi-population interactive update group and the quantum entanglement update group are introduced to guide the algorithm to gradually approach the global optimal solution. Second, the proposed bionic algorithm is extended for cross-field applications. The algorithm is applied to solve the function optimization problems, as well as problems in four distinct application fields, including robot routing optimization of grid maps, vehicle scheduling optimization of dairy enterprises, location optimization of logistics centers, and plasma trajectory planning optimization. The proposed multigroup cooperative evolutionary optimization algorithm achieves competitive results in these application fields, thus demonstrating its versatility and robustness.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.