基尔霍夫定律算法(KLA):一种新的物理启发的非参数元启发式优化算法

IF 13.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mojtaba Ghasemi, Nima Khodadadi, Pavel Trojovský, Li Li, Zulkefli Mansor, Laith Abualigah, Amal H. Alharbi, El-Sayed M. El-Kenawy
{"title":"基尔霍夫定律算法(KLA):一种新的物理启发的非参数元启发式优化算法","authors":"Mojtaba Ghasemi,&nbsp;Nima Khodadadi,&nbsp;Pavel Trojovský,&nbsp;Li Li,&nbsp;Zulkefli Mansor,&nbsp;Laith Abualigah,&nbsp;Amal H. Alharbi,&nbsp;El-Sayed M. El-Kenawy","doi":"10.1007/s10462-025-11289-5","DOIUrl":null,"url":null,"abstract":"<div><p>This research introduces Kirchhoff’s Law Algorithm (KLA), a novel optimization method inspired by electrical circuit laws, particularly Kirchhoff’s Current Law (KCL). The KLA is evaluated using real-parameter test functions including CEC-2005, 2014, and 2017, comparing its performance with several established algorithms. Results from real-parameter and constrained benchmark functions affirm KLA’s accuracy and convergence rate superiority compared to other algorithms. Notably, when applied to the CEC-2005 benchmarks with dimensions ranging from 30 to 100, KLA demonstrates a remarkable ability to maintain population diversity throughout the search process within a feasible search space. Based on the average rank criteria, KLA consistently outperforms other algorithms despite its simplicity and lack of control parameters (aside from population size). This inherent simplicity makes KLA easy to use as-is, adaptable, and compatible with other optimization techniques. The source codes of the KLA algorithm are publicly available at https://nimakhodadadi.com/algorithms-%2B-codes.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 10","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11289-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Kirchhoff’s law algorithm (KLA): a novel physics-inspired non-parametric metaheuristic algorithm for optimization problems\",\"authors\":\"Mojtaba Ghasemi,&nbsp;Nima Khodadadi,&nbsp;Pavel Trojovský,&nbsp;Li Li,&nbsp;Zulkefli Mansor,&nbsp;Laith Abualigah,&nbsp;Amal H. Alharbi,&nbsp;El-Sayed M. El-Kenawy\",\"doi\":\"10.1007/s10462-025-11289-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research introduces Kirchhoff’s Law Algorithm (KLA), a novel optimization method inspired by electrical circuit laws, particularly Kirchhoff’s Current Law (KCL). The KLA is evaluated using real-parameter test functions including CEC-2005, 2014, and 2017, comparing its performance with several established algorithms. Results from real-parameter and constrained benchmark functions affirm KLA’s accuracy and convergence rate superiority compared to other algorithms. Notably, when applied to the CEC-2005 benchmarks with dimensions ranging from 30 to 100, KLA demonstrates a remarkable ability to maintain population diversity throughout the search process within a feasible search space. Based on the average rank criteria, KLA consistently outperforms other algorithms despite its simplicity and lack of control parameters (aside from population size). This inherent simplicity makes KLA easy to use as-is, adaptable, and compatible with other optimization techniques. The source codes of the KLA algorithm are publicly available at https://nimakhodadadi.com/algorithms-%2B-codes.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 10\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-025-11289-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-025-11289-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11289-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

基尔霍夫定律算法(KLA)是一种受电路定律,特别是基尔霍夫电流定律(KCL)启发的新型优化方法。使用实参数测试函数(包括CEC-2005、2014和2017)对KLA进行了评估,并将其性能与几种已建立的算法进行了比较。实参数和约束基准函数的结果证实了KLA的精度和收敛速度优于其他算法。值得注意的是,当应用于ec -2005基准(维度范围从30到100)时,KLA显示出在可行的搜索空间内,在整个搜索过程中保持种群多样性的卓越能力。基于平均排名标准,KLA一直优于其他算法,尽管它简单且缺乏控制参数(除了种群大小)。这种固有的简单性使KLA易于按原样使用、可适应并与其他优化技术兼容。KLA算法的源代码可在https://nimakhodadadi.com/algorithms-%2B-codes上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kirchhoff’s law algorithm (KLA): a novel physics-inspired non-parametric metaheuristic algorithm for optimization problems

This research introduces Kirchhoff’s Law Algorithm (KLA), a novel optimization method inspired by electrical circuit laws, particularly Kirchhoff’s Current Law (KCL). The KLA is evaluated using real-parameter test functions including CEC-2005, 2014, and 2017, comparing its performance with several established algorithms. Results from real-parameter and constrained benchmark functions affirm KLA’s accuracy and convergence rate superiority compared to other algorithms. Notably, when applied to the CEC-2005 benchmarks with dimensions ranging from 30 to 100, KLA demonstrates a remarkable ability to maintain population diversity throughout the search process within a feasible search space. Based on the average rank criteria, KLA consistently outperforms other algorithms despite its simplicity and lack of control parameters (aside from population size). This inherent simplicity makes KLA easy to use as-is, adaptable, and compatible with other optimization techniques. The source codes of the KLA algorithm are publicly available at https://nimakhodadadi.com/algorithms-%2B-codes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信